Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38477657

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproven. The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and wellbeing of ARDS survivors.

2.
Acta Physiol (Oxf) ; 240(5): e14128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551103

RESUMO

AIM: Mechanical ventilation (MV) results in diminished diaphragm size and strength, termed ventilator-induced diaphragm dysfunction (VIDD). VID increases dependence, prolongs weaning, and increases discharge mortality rates. The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway is implicated in VIDD, upregulated following MV. JAK/STAT inhibition alleviates chronic muscle wasting conditions. This study aimed to explore the therapeutic potential of Ruxolitinib, an FDA approved JAK1/2 inhibitor (JI) for the treatment of VIDD. METHODS: Rats were subjected to 5 days controlled MV (CMV) with and without daily Ruxolitinib gavage. Muscle fiber size and function were assessed. RNAseq, mitochondrial morphology, respirometry, and mass spectrometry were determined. RESULTS: CMV significantly reduced diaphragm size and specific force by 45% (p < 0.01), associated with a two-fold P-STAT3 upregulation (p < 0.001). CMV disrupted mitochondrial content and reduced the oxygen consumption rate (p < 0.01). Expression of the motor protein myosin was unaffected, however CMV alters myosin function via post-translational modifications (PTMs). Daily administration of JI increased animal survival (40% vs. 87%; p < 0.05), restricted P-STAT3 (p < 0.001), and preserved diaphragm size and specific force. JI was associated with preserved mitochondrial content and respiratory function (p < 0.01), and the reversal or augmentation of myosin deamidation PTMs of the rod and head region. CONCLUSION: JI preserved diaphragm function, leading to increased survival in an experimental model of VIDD. Functional enhancement was associated with maintenance of mitochondrial content and respiration and the reversal of ventilator-induced PTMs of myosin. These results demonstrate the potential of repurposing Ruxolitinib for treatment of VIDD.


Assuntos
Diafragma , Nitrilas , Pirazóis , Pirimidinas , Respiração Artificial , Animais , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Diafragma/fisiopatologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Nitrilas/farmacologia , Ratos , Respiração Artificial/efeitos adversos , Masculino , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos Sprague-Dawley
3.
Ann Am Thorac Soc ; 21(3): 428-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134434

RESUMO

Rationale: Hospital readmission within 30 days poses challenges for healthcare providers, policymakers, and patients because of its impact on care quality, costs, and outcomes. Patients with interstitial lung disease (ILD) are particularly affected by readmission, which is associated with increased morbidity and mortality and reduced quality of life. Because small sample sizes have hindered previous studies, this study seeks to address this gap in knowledge by examining a large-scale dataset. Objective: To determine the rate and probability of 30-day all-cause readmission and secondary outcomes in patients with coronavirus disease (COVID-19) or ILD admitted to the hospital. Methods: This study is a nested cohort study that used the PearlDiver patient records database. Adult patients (age ⩾18 yr) who were admitted to hospitals in 28 states in the United States with COVID-19 or ILD diagnoses were included. We defined and analyzed two separate cohorts in this study. The first cohort consisted of patients with COVID-19 and was later divided into two groups with or without a history of ILD. The second cohort consisted of patients with ILD and was later divided into groups with COVID-19 or with a non-COVID-19 pneumonia diagnosis at admission. We also studied two other subcohorts of patients with and without idiopathic pulmonary fibrosis within the second cohort. Propensity score matching was employed to match confounders between groups. The Kaplan-Meier log rank test was applied to compare the probabilities of outcomes. Results: We assessed the data of 2,286,775 patients with COVID-19 and 118,892 patients with ILD. We found that patients with COVID-19 with preexisting ILD had an odds ratio of 1.6 for 30-day all-cause readmission. Similarly, an odds ratio of 2.42 in readmission rates was observed among hospitalized individuals with ILD who contracted COVID-19 compared with those who were hospitalized for non-COVID-19 pneumonia. Our study also found a significantly higher probability of intensive care admission among patients in both cohorts. Conclusions: Patients with ILD face heightened rates of hospital readmissions, particularly when ILD is combined with COVID-19, resulting in adverse outcomes such as decreased quality of life and increased healthcare expenses. It is imperative to prioritize preventive measures against COVID-19 and establish effective postdischarge care strategies for patients with ILD.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Pneumonia , Adulto , Humanos , Estados Unidos/epidemiologia , Readmissão do Paciente , Estudos de Coortes , Qualidade de Vida , Assistência ao Convalescente , COVID-19/epidemiologia , COVID-19/complicações , Alta do Paciente , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/terapia , Doenças Pulmonares Intersticiais/complicações , Pneumonia/complicações
4.
BMJ Open ; 13(9): e073130, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669844

RESUMO

BACKGROUND: Hereditary transthyretin-mediated amyloidosis is a rare, progressive and potentially life-limiting multisystem disease, affecting every aspect of a patient's life. OBJECTIVES: This online international Delphi survey aimed to evolve clinical-patient-led practical guidance, to inspire and encourage a holistic approach to care that is managed in specialist settings by multidisciplinary teams and supported by allied healthcare professionals (HCPs) and patient advocacy groups (PAGs). DESIGN: A 14-member joint patient advocate-HCP primary panel was convened including representation from PAGs and key clinical specialties (neurology, cardiology, internal medicine, physiotherapy, clinical psychology, dietetics and specialist nursing). Guidance evolved on the care provision needed to support seven core goals: early diagnosis and treatment; disease monitoring and organisation of care; maintenance of physical and mental health; family-centred care and caregiver support; patient-doctor dialogue; access to social support and social networking. PARTICIPANTS: From June to October 2022, 252 HCPs and 51 PAG representatives from 27 countries were invited to participate in a Delphi survey. Of the 122 respondents who answered at least one survey question, most were HCPs (100, 82%) from specialist centres; the remainder were PAG representatives (22, 18%). MAIN OUTCOME MEASURE: Both level of agreement and feasibility in practice of each recommendation was tested by two anonymised online Delphi voting rounds. RESULTS: Based on an a priori threshold for consensus of ≥75% agreement, the clinical-patient community endorsed all but one recommendation. However, only 17/49 (35%) recommendations were identified by most HCPs as a core part of routine care; the remainder (32/49 (65%)) were identified as part of core care by <50% of HCPs respondents, or as largely achievable by 30%-45% of HCPs. By comparison, PAGs recorded lower implementation levels. CONCLUSIONS: Further consideration is needed on how to evolve multidisciplinary services (supported by allied HCPs and PAGs) to address the complex needs of those affected by this disease.


Assuntos
Neuropatias Amiloides Familiares , Defesa do Paciente , Humanos , Consenso , Medicina Interna , Atenção à Saúde
5.
World J Surg Oncol ; 21(1): 280, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670317

RESUMO

BACKGROUND: Patients with melanoma have been found to be at greater risk of adverse outcomes including mortality after contacting COVID-19. Management of postsurgical complications presented additional challenges by potentially increasing exposure to COVID-19 through repeated inpatient admissions to hospital during the pandemic. We report four cases for which skin flaps, lymph ligation, and split-thickness skin graft (STSG) were successfully used in the treatment of complications in the trunk and extremities after wide local excision (WLE). This study details the operative experience in management of postsurgical complications for melanoma in the trunk and extremities during a 6-month period at the height of the COVID-19 pandemic. CASE PRESENTATION: We present 4 cases detailing management of complications that occurred after wide local excisions performed for melanoma during Feb. to Oct. 2020. Case 1: A 90-year-old man who experienced wound dehiscence and necrosis on the shoulder after non-radical excision for an aggressive melanoma and underwent the side-to-side closure after ellipse formed WLE with modified tangent-to-circle method. Case 2: An 80-year-old man who had undergone excision for melanoma in his left upper arm and histopathology did not show radically. Two weeks after the excision, he underwent a WLE and direct reconstruction with double rotation skin flap. Case 3: A 55-year-old man that experienced a large wound dehiscence on his back due to WLE. He underwent an advanced double skin flap operation. Case 4: A 36-year-old woman who had a lymphorrhea and graft necrosis after WLE and STSG on the right lower leg. A combination of micro lymph ligation and re-STSG was performed. One month after the operation, all wounds had healed. There was no clinical evidence of tumor recurrence after 8 months post procedure. CONCLUSIONS: Severe complications (e.g., large wound dehiscence, necrosis, or lymphorrhea) following wide local excision of melanoma are infrequent but must be swiftly and appropriately managed, especially during the COVID-19 pandemic to decrease the likelihood of COVID-19 infection and impaired oncology outcomes from delaying systemic cancer therapy due to the complications in primary interventions.


Assuntos
COVID-19 , Melanoma , Masculino , Feminino , Humanos , Adulto , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Pandemias , Recidiva Local de Neoplasia , Extremidades , Procedimentos Cirúrgicos Dermatológicos , Complicações Pós-Operatórias
6.
Cell Rep ; 42(8): 112961, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561633

RESUMO

Refractory and relapsed B cell lymphomas are often driven by the difficult-to-target oncogene MYC. Here, we report that high MYC expression stimulates proliferation and protects B lymphoma cells from apoptosis under normal oxidative stress levels and that compounds including N-acetylcysteine (NAC) and vitamin C (VitC) induce apoptosis by reducing oxidative stress. NAC and VitC injections effectively reduce tumor growth in lymphoma cells with high MYC expression but not in those with low MYC expression. MYC knockdown confers tumor resistance to NAC and VitC, while MYC activation renders B cells sensitive to these compounds. Mechanistically, NAC and VitC stimulate MYC binding to EGR1 through Cys117 of MYC, shifting its transcriptional output from cell cycle to apoptosis gene expression. These results identify a redox-controlled mechanism for MYC's role in maintaining proliferation and preventing apoptosis, offering a potential therapeutic rationale for evaluating NAC or VitC in patients with MYC-driven B cell lymphoma.

7.
Front Physiol ; 14: 1207802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440999

RESUMO

Ventilator-induced diaphragm dysfunction (VIDD) is a common sequela of intensive care unit (ICU) treatment requiring mechanical ventilation (MV) and neuromuscular blockade (NMBA). It is characterised by diaphragm weakness, prolonged respirator weaning and adverse outcomes. Dissociative glucocorticoids (e.g., vamorolone, VBP-15) and chaperone co-inducers (e.g., BGP-15) previously showed positive effects in an ICU-rat model. In limb muscle critical illness myopathy, preferential myosin loss prevails, while myofibrillar protein post-translational modifications are more dominant in VIDD. It is not known whether the marked decline in specific force (force normalised to cross-sectional area) is a pure consequence of altered contractility signaling or whether diaphragm weakness also has a structural correlate through sterical remodeling of myofibrillar cytoarchitecture, how quickly it develops, and to which extent VBP-15 or BGP-15 may specifically recover myofibrillar geometry. To address these questions, we performed label-free multiphoton Second Harmonic Generation (SHG) imaging followed by quantitative morphometry in single diaphragm muscle fibres from healthy rats subjected to five or 10 days of MV + NMBA to simulate ICU treatment without underlying confounding pathology (like sepsis). Rats received daily treatment of either Prednisolone, VBP-15, BGP-15 or none. Myosin-II SHG signal intensities, fibre diameters (FD) as well as the parameters of myofibrillar angular parallelism (cosine angle sum, CAS) and in-register of adjacent myofibrils (Vernier density, VD) were computed from SHG images. ICU treatment caused a decline in FD at day 10 as well as a significant decline in CAS and VD from day 5. Vamorolone effectively recovered FD at day 10, while BGP-15 was more effective at day 5. BGP-15 was more effective than VBP-15 in recovering CAS at day 10 although not to control levels. In-register VD levels were restored at day 10 by both compounds. Our study is the first to provide quantitative insights into VIDD-related myofibrillar remodeling unravelled by SHG imaging, suggesting that both VBP-15 and BGP-15 can effectively ameliorate the structure-related dysfunction in VIDD.

8.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175848

RESUMO

Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.


Assuntos
Secretases da Proteína Precursora do Amiloide , Neuroblastoma , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Transdução de Sinais/genética , Linhagem Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Amplificação de Genes
9.
J Cachexia Sarcopenia Muscle ; 14(3): 1533-1545, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060275

RESUMO

BACKGROUND: There is increasing evidence of crosstalk between organs. The neuromuscular junction (NMJ) is a peripheral chemical synapse whose function and morphology are sensitive to acetylcholine (ACh) release and muscle depolarization. In an attempt to improve our understanding of NMJ plasticity and muscle crosstalk, the effects of unilateral direct electrical stimulation of a hindlimb muscle on the NMJ were investigated in rats exposed long-term post-synaptic neuromuscular blockade. METHODS: Sprague Dawley rats were subjected to post-synaptic blockade of neuromuscular transmission by systemic administration of α-cobrotoxin and mechanically ventilated for up to 8 days and compared with untreated sham operated controls and animals exposed to unilateral chronic electrical stimulation 12 h/day for 5 or 8 days. RESULTS: NMJs produced axonal and glial sprouts (growth of processes that extend beyond the confines of the synapse defined by high-density aggregates of acetylcholine receptors [AChRs]) in response to post-synaptic neuromuscular blockade, but less than reported after peripheral denervation or pre-synaptic blockade. Direct electrical soleus muscle stimulation reduced the terminal Schwann cell (tSC) and axonal sprouting in both stimulated and non-stimulated contralateral soleus. Eight days chronic stimulation reduced (P < 0.001) the number of tSC sprouts on stimulated and non-stimulated soleus from 6.7 ± 0.5 and 6.9 ± 0.5 sprouts per NMJ, respectively, compared with 10.3 ± 0.9 tSC per NMJ (P < 0.001) in non-stimulated soleus from rats immobilized for 8 days. A similar reduction of axonal sprouts (P < 0.001) was observed in stimulated and non-stimulated contralateral soleus in response to chronic electrical stimulation. RNAseq-based gene expression analyses confirmed a restoring effect on both stimulated and unstimulated contralateral muscle. The cross-over effect was paralleled by increased cytokine/chemokine levels in stimulated and contralateral unstimulated muscle as well as in plasma. CONCLUSIONS: Motor axon terminals and terminal Schwann cells at NMJs of rats subjected to post-synaptic neuromuscular blockade exhibited sprouting responses. These axonal and glial responses were likely dampened by a muscle-derived myokines released in an activity-dependent manner with both local and systemic effects.


Assuntos
Músculo Esquelético , Junção Neuromuscular , Ratos , Animais , Ratos Sprague-Dawley , Junção Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo , Estimulação Elétrica
10.
Discoveries (Craiova) ; 10(1): e144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530835

RESUMO

Metabolism and movement, among the critical determinants in the survival and success of an organism, are tightly regulated by the brain and skeletal muscle. At the cellular level, mitochondria -that powers life, and myosin - the molecular motor of the cell, have both evolved to serve this purpose. Although independently, the skeletal muscle and brain have been intensively investigated for over a century, their coordinated involvement in metabolism and movement remains poorly understood. Therefore, a fundamental understanding of the coordinated involvement of the brain and skeletal muscle in metabolism and movement holds great promise in providing a window to a wide range of life processes and in the development of tools and approaches in disease detection and therapy. Recent developments in new tools, technologies and approaches, and advances in computing power and machine learning, provides for the first time the opportunity to establish a new field of study, the 'Science and Engineering of Metabolism and Movement'. This new field of study could provide substantial new insights and breakthrough into how metabolism and movement is governed at the systems level in an organism. The design and approach to accomplish this objective is briefly discussed in this article.

12.
J Cachexia Sarcopenia Muscle ; 13(6): 2669-2682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222215

RESUMO

BACKGROUND: Critical illness myopathy (CIM) is a consequence of modern critical care resulting in general muscle wasting and paralyses of all limb and trunk muscles, resulting in prolonged weaning from the ventilator, intensive care unit (ICU) treatment and rehabilitation. CIM is associated with severe morbidity/mortality and significant negative socioeconomic consequences, which has become increasingly evident during the current COVID-19 pandemic, but underlying mechanisms remain elusive. METHODS: Ten neuro-ICU patients exposed to long-term controlled mechanical ventilation were followed with repeated muscle biopsies, electrophysiology and plasma collection three times per week for up to 12 days. Single muscle fibre contractile recordings were conducted on the first and final biopsy, and a multiomics approach was taken to analyse gene and protein expression in muscle and plasma at all collection time points. RESULTS: (i) A progressive preferential myosin loss, the hallmark of CIM, was observed in all neuro-ICU patients during the observation period (myosin:actin ratio decreased from 2.0 in the first to 0.9 in the final biopsy, P < 0.001). The myosin loss was coupled to a general transcriptional downregulation of myofibrillar proteins (P < 0.05; absolute fold change >2) and activation of protein degradation pathways (false discovery rate [FDR] <0.1), resulting in significant muscle fibre atrophy and loss in force generation capacity, which declined >65% during the 12 day observation period (muscle fibre cross-sectional area [CSA] and maximum single muscle fibre force normalized to CSA [specific force] declined 30% [P < 0.007] and 50% [P < 0.0001], respectively). (ii) Membrane excitability was not affected as indicated by the maintained compound muscle action potential amplitude upon supramaximal stimulation of upper and lower extremity motor nerves. (iii) Analyses of plasma revealed early activation of inflammatory and proinflammatory pathways (FDR < 0.1), as well as a redistribution of zinc ions from plasma. CONCLUSIONS: The mechanical ventilation-induced lung injury with release of cytokines/chemokines and the complete mechanical silencing uniquely observed in immobilized ICU patients affecting skeletal muscle gene/protein expression are forwarded as the dominant factors triggering CIM.


Assuntos
Doenças Musculares , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Estado Terminal , Doenças Musculares/diagnóstico , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Miosinas/metabolismo , Estudos Prospectivos , Multiômica , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Quimiocinas , Citocinas
13.
Nat Commun ; 13(1): 5093, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064840

RESUMO

The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn't well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Tuberculose , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Camundongos , Linfócitos T/imunologia , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/prevenção & controle , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia
14.
Front Mol Biosci ; 9: 823195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720128

RESUMO

Restoration of the p53 tumor suppressor for personalised cancer therapy is a promising treatment strategy. However, several high-affinity MDM2 inhibitors have shown substantial side effects in clinical trials. Thus, elucidation of the molecular mechanisms of action of p53 reactivating molecules with alternative functional principle is of the utmost importance. Here, we report a discovery of a novel allosteric mechanism of p53 reactivation through targeting the p53 N-terminus which promotes inhibition of both p53/MDM2 (murine double minute 2) and p53/MDM4 interactions. Using biochemical assays and molecular docking, we identified the binding site of two p53 reactivating molecules, RITA (reactivation of p53 and induction of tumor cell apoptosis) and protoporphyrin IX (PpIX). Ion mobility-mass spectrometry revealed that the binding of RITA to serine 33 and serine 37 is responsible for inducing the allosteric shift in p53, which shields the MDM2 binding residues of p53 and prevents its interactions with MDM2 and MDM4. Our results point to an alternative mechanism of blocking p53 interaction with MDM2 and MDM4 and may pave the way for the development of novel allosteric inhibitors of p53/MDM2 and p53/MDM4 interactions.

15.
J Cachexia Sarcopenia Muscle ; 13(4): 2162-2174, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35502572

RESUMO

BACKGROUND: Critical illness myopathy (CIM) is a debilitating condition characterized by the preferential loss of the motor protein myosin. CIM is a by-product of critical care, attributed to impaired recovery, long-term complications, and mortality. CIM pathophysiology is complex, heterogeneous and remains incompletely understood; however, loss of mechanical stimuli contributes to critical illness-associated muscle atrophy and weakness. Passive mechanical loading and electrical stimulation (ES) therapies augment muscle mass and function. While having beneficial outcomes, the mechanistic underpinning of these therapies is less known. Therefore, here we aimed to assess the mechanism by which chronic supramaximal ES ameliorates CIM in a unique experimental rat model of critical care. METHODS: Rats were subjected to 8 days of critical care conditions entailing deep sedation, controlled mechanical ventilation, and immobilization with and without direct soleus ES. Muscle size and function were assessed at the single cell level. RNAseq and western blotting were employed to understand the mechanisms driving ES muscle outcomes in CIM. RESULTS: Following 8 days of controlled mechanical ventilation and immobilization, soleus muscle mass, myosin : actin ratio, and single muscle fibre maximum force normalized to cross-sectional area (CSA; specific force) were reduced by 40-50% (P < 0.0001). ES significantly reduced the loss of soleus muscle fibre CSA and myosin : actin ratio by approximately 30% (P < 0.05) yet failed to effect specific force. RNAseq pathway analysis revealed downregulation of insulin signalling in the soleus muscle following critical care, and GLUT4 trafficking was reduced by 55% leading to an 85% reduction of muscle glycogen content (P < 0.01). ES promoted phosphofructokinase and insulin signalling pathways to control levels (P < 0.05), consistent with the maintenance of GLUT4 translocation and glycogen levels. AMPK, but not AKT, signalling pathway was stimulated following ES, where the downstream target TBC1D4 increased 3 logFC (P = 0.029) and AMPK-specific P-TBC1D4 levels were increased approximately two-fold (P = 0.06). Reduction of muscle protein degradation rather than increased synthesis promoted soleus CSA, as ES reduced E3 ubiquitin proteins, Atrogin-1 (P = 0.006) and MuRF1 (P = 0.08) by approximately 50%, downstream of AMPK-FoxO3. CONCLUSIONS: ES maintained GLUT4 translocation through increased AMPK-TBC1D4 signalling leading to improved muscle glucose homeostasis. Soleus CSA and myosin content was promoted through reduced protein degradation via AMPK-FoxO3 E3 ligases, Atrogin-1 and MuRF1. These results demonstrate chronic supramaximal ES reduces critical care associated muscle wasting, preserved glucose signalling, and reduced muscle protein degradation in CIM.


Assuntos
Estado Terminal , Terapia por Estimulação Elétrica , Transportador de Glucose Tipo 4 , Atrofia Muscular , Doenças Musculares , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas , Animais , Estado Terminal/terapia , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Doenças Musculares/etiologia , Doenças Musculares/terapia , Miosinas/metabolismo , Ratos
16.
Front Cell Dev Biol ; 10: 849973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392172

RESUMO

Critical illness myopathy (CIM) and ventilator-induced diaphragm dysfunction (VIDD) are characterized by severe muscle wasting, muscle paresis, and extubation failure with subsequent increased medical costs and mortality/morbidity rates in intensive care unit (ICU) patients. These negative effects in response to modern critical care have received increasing attention, especially during the current COVID-19 pandemic. Based on experimental and clinical studies from our group, it has been hypothesized that the ventilator-induced lung injury (VILI) and the release of factors systemically play a significant role in the pathogenesis of CIM and VIDD. Our previous experimental/clinical studies have focused on gene/protein expression and the effects on muscle structure and regulation of muscle contraction at the cell and motor protein levels. In the present study, we have extended our interest to alterations at the metabolomic level. An untargeted metabolomics approach was undertaken to study two respiratory muscles (diaphragm and intercostal muscle) and lung tissue in rats exposed to five days controlled mechanical ventilation (CMV). Metabolomic profiles in diaphragm, intercostal muscles and lung tissue were dramatically altered in response to CMV, most metabolites of which belongs to lipids and amino acids. Some metabolites may possess important biofunctions and play essential roles in the metabolic alterations, such as pyruvate, citrate, S-adenosylhomocysteine, alpha-ketoglutarate, glycerol, and cysteine. Metabolic pathway enrichment analysis identified pathway signatures of each tissue, such as decreased metabolites of dipeptides in diaphragm, increased metabolites of branch-chain amino acid metabolism and purine metabolism in intercostals, and increased metabolites of fatty acid metabolism in lung tissue. These metabolite alterations may be associated with an accelerated myofibrillar protein degradation in the two respiratory muscles, an active inflammatory response in all tissues, an attenuated energy production in two respiratory muscles, and enhanced energy production in lung. These results will lay the basis for future clinical studies in ICU patients and hopefully the discovery of biomarkers in early diagnosis and monitoring, as well as the identification of future therapeutic targets.

17.
Arch Biochem Biophys ; 722: 109212, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398018

RESUMO

The biophysical function of myosin in vitro has been extensively investigated in different motility assays, but the study of myosin ATPase properties at the fiber level is insufficiently investigated. In this study, quantum dot (QD) mediated thermometry measurements were optimized to measure the efficiency of myosin extracted from muscle mini bundles. A reduction in fluorescent intensity of QD reflects an increase in temperature caused by the heat released during ATP hydrolysis and denotes the efficiency of the motor protein myosin. The procedure for extracting myosin was similar to the single fiber in vitro motility assay with some small modifications, and the concentration of myosin was represented by the extracted total protein since the ratio of extracted myosin to total protein was constant. Moreover, the efficiencies of myosin extracted from preparations containing different myosin heavy chain isoforms reveal lower efficiency of slow compared to fast myosin isoforms. Specifically, more heat was released in slow myosin enzymatic reaction, resulting in faster decay of QD fluorescence intensity. Hence, the optimized QD mediated thermometry provides a novel and sensitive approach to evaluate efficiency of myosin ATPase obtained from small muscle samples, representing a significant advantage in the clinical evaluation of neuromuscular disorders.


Assuntos
Pontos Quânticos , Termometria , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo
18.
Curr Treat Options Neurol ; 24(4): 173-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370393

RESUMO

Purpose of review: Critical illness myopathy (CIM) is a common neuro-muscular complication of intensive care treatment associated with increased morbidity and mortality. The current guidelines for diagnosis include clinical and electrophysiological criteria as well as a muscle biopsy, and allow diagnosis only at an advanced stage of the disease. To date, there is no treatment for CIM available, apart from symptomatic and rehabilitative interventions. In this review, we discuss different diagnostic approaches and describe new treatment possibilities for CIM. Recent findings: Of the diagnostic approaches evaluated, a new electrophysiological technique for measuring muscle excitability has the greatest potential to allow earlier diagnosis of CIM than the current guidelines do and thereby may facilitate the conduction of future pathophysiological and therapeutic studies. Although clinical trials are still lacking, in animal models, BGP-15, vamorolone, and ruxolitinib have been shown to have anti-inflammatory effects, to reduce muscle wasting and to improve muscle function and survival. Summary: In recent years, promising methods for early and confirmatory diagnosis of CIM have been developed, but still need validation. Experimental studies on novel pharmacological interventions show promising results in terms of preventive CIM treatments, but future clinical studies will be needed to study the effectiveness and safety of these drugs.

19.
J Orthop Res ; 40(6): 1293-1300, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34379332

RESUMO

Prolonged mechanical ventilation for critically ill patients with respiratory distress can result in severe muscle wasting with preferential loss of myosin. Systemic inflammation triggered by lung mechanical injury likely contributes to this myopathy, although the exact mechanisms are unknown. In this study, we hypothesized that muscle wasting following mechanical ventilation is accompanied by bone loss. The objective was to determine the rate, nature, and extent of bone loss in the femora of rats ventilated up to 10 days and to relate the bone changes to muscle deterioration. We have developed a rat model of ventilator-induced muscle wasting and established its feasibility and clinical validity. This model involves pharmacologic paralysis, parenteral nutrition, and continuous mechanical ventilation. We assessed the hindlimb muscle and bone of rats ventilated for 0, 2, 5, 8, and 10 days. Routine histology, microCT, and biomechanical evaluations were performed. Hindlimb muscles developed changes consistent with myopathy, whereas the femurs demonstrated a progressive decline in trabecular bone volume, mineral density, and microarchitecture beginning Day 8 of mechanical ventilation. Biomechanical testing showed a reduction in flexural strength and stiffness on Day 10. The bone changes correlated with the loss of muscle mass and myosin. These results demonstrate that mechanical ventilation leads to progressive trabecular bone loss parallel to muscle deterioration. The results of our study suggest that mechanically ventilated patients may be at risk of compromised bone integrity and muscle weakness, predisposing to post-ventilator falls and fractures, thereby warranting interventions to prevent progressive bone and muscle decline.


Assuntos
Estado Terminal , Doenças Musculares , Animais , Osso Esponjoso , Humanos , Atrofia Muscular , Doenças Musculares/etiologia , Ratos , Respiração Artificial/efeitos adversos
20.
J Nutr ; 152(4): 926-938, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958390

RESUMO

Activating transcription factor 4 (ATF4) is a multifunctional transcription regulatory protein in the basic leucine zipper superfamily. ATF4 can be expressed in most if not all mammalian cell types, and it can participate in a variety of cellular responses to specific environmental stresses, intracellular derangements, or growth factors. Because ATF4 is involved in a wide range of biological processes, its roles in human health and disease are not yet fully understood. Much of our current knowledge about ATF4 comes from investigations in cultured cell models, where ATF4 was originally characterized and where further investigations continue to provide new insights. ATF4 is also an increasingly prominent topic of in vivo investigations in fully differentiated mammalian cell types, where our current understanding of ATF4 is less complete. Here, we review some important high-level concepts and questions concerning the basic biology of ATF4. We then discuss current knowledge and emerging questions about the in vivo role of ATF4 in one fully differentiated cell type, mammalian skeletal muscle fibers.


Assuntos
Fator 4 Ativador da Transcrição , Atrofia Muscular , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Biologia , Diferenciação Celular , Humanos , Mamíferos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...