Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(8): e2200508, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808212

RESUMO

N-phosphonomethyle-glycine (glyphosate) is the most widely used pesticide worldwide due to its effectiveness in killing weeds at a moderate cost, bringing significant economic benefits. However, owing to its massive use, glyphosate and its residues contaminate surface waters. On site, fast monitoring of contamination is therefore urgently needed to alert local authorities and raise population awareness. Here the hindrance of the activity of two enzymes, the exonuclease I (Exo I) and the T5 exonuclease (T5 Exo) by glyphosate, is reported. These two enzymes digest oligonucleotides into shorter sequences, down to single nucleotides. The presence of glyphosate in the reaction medium hampers the activity of both enzymes, slowing down enzymatic digestion. It is shown by fluorescence spectroscopy that the inhibition of ExoI enzymatic activity is specific to glyphosate, paving the way for the development of a biosensor to detect this pollutant in drinking water at suitable detection limits, i.e., 0.6 nm.


Assuntos
Água Potável , Herbicidas , Herbicidas/análise , Herbicidas/farmacologia , Glicina , Glifosato
2.
ACS Nano ; 15(3): 3927-3959, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620200

RESUMO

Development of carbon neutral and sustainable energy sources should be considered as a top priority solution for the growing worldwide energy demand. Photovoltaics are a strong candidate, more specifically, organic photovoltaics (OPV), enabling the design of flexible, lightweight, semitransparent, and low-cost solar cells. However, the active layer of OPV is, for now, mainly deposited from chlorinated solvents, harmful for the environment and for human health. Active layers processed from health and environmentally friendly solvents have over recent years formed a key focus topic of research, with the creation of aqueous dispersions of conjugated polymer nanoparticles arising. These nanoparticles are formed from organic semiconductors (molecules and macromolecules) initially designed for organic solvents. The topic of nanoparticle OPV has gradually garnered more attention, up to a point where in 2018 it was identified as a "trendsetting strategy" by leaders in the international OPV research community. Hence, this review has been prepared to provide a timely roadmap of the formation and application of aqueous nanoparticle dispersions of active layer components for OPV. We provide a thorough synopsis of recent developments in both nanoprecipitation and miniemulsion for preparing photovoltaic inks, facilitating readers in acquiring a deep understanding of the crucial synthesis parameters affecting particle size, colloidal concentration, ink stability, and more. This review also showcases the experimental levers for identifying and optimizing the internal donor-acceptor morphology of the nanoparticles, featuring cutting-edge X-ray spectromicroscopy measurements reported over the past decade. The different strategies to improve the incorporation of these inks into OPV devices and to increase their efficiency (to the current record of 7.5%) are reported, in addition to critical design choices of surfactant type and the advantages of single-component vs binary nanoparticle populations. The review naturally culminates by presenting the upscaling strategies in practice for this environmentally friendly and safer production of solar cells.

3.
Nanotechnology ; 31(31): 315712, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32311686

RESUMO

Low-bandgap polymers are widely used as p-type components in photoactive layers of organic solar cells, due to their ability to capture a large portion of the solar spectrum. The comprehension of their supramolecular assembly is crucial in achieving high-performance organic electronic devices. Here we synthezed two exemplar low-bandgap cyclopentadithiophene (CPDT):diketopyrrolopyrrole (DPP)-based polymers, with either a twelve carbon (C12) or a tri etyleneglycol (TEG) side chains on the DPP units (respectively denoted PCPDTDPP_C12 and PCPDTDPP_TEG). We deposited Langmuir-Schaefer films of these polymers blended with the widely used electron donor material [6,6]-phenyl-C61-butyric-acid methyl ester (PCBM). We then characterized the conformational, optical and morphological properties of these films. From the monolayers to the solid films, we observed distinct self-organization and surface properties for each polymer due to the distinct nature of their side chains. Emphasizing their attraction interactions with PCBM and the phase transitions according to the surface pressure. The elements amount on the surface, calculated through the XPS, gave us a good insight on the polymers' conformations. Through UV-visible absorption spectroscopy, the improvement in the PCPDTDPP film ordering upon PCBM addition is evident and we saw the contribution of the polymer units on the optical response. Chemical attributions of the polymers were assigned using FTIR Spectroscopy and Raman Scattering, revealing the physical interaction after mixing the materials. We showed that it is possible to build nanostructured PCPDTDPPs films with a high control of their molecular properties through an understanding of their self-assembly and interactions with an n-type material.

4.
Chem Commun (Camb) ; 52(61): 9562-5, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27387773

RESUMO

Polymer films with hierarchical micro- and nano-porosities were prepared by combining the fast solvent evaporation "Breath Figure" (BF) method, exhibiting a highly regular honeycomb micro-porous texture, with the additional nanoscale self-assembly of polylactide-block-polystyrene (PLA-b-PS) diblock copolymers, PLA being used thereafter as a sacrificial component for nano-porosity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...