Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1240357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742131

RESUMO

Anxiety is common in neurodevelopmental disorders (NDD). The parent version of the Spence Children's Anxiety Scale (SCAS-P) is a widely used measure to assess anxiety across a broad range of childhood populations. However, assessment of the measurement properties of the SCAS-P in NDDs have been limited. The present study aimed to assess the psychometric properties of the SCAS-P in children with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) using Rasch Measurement Theory. Data from the Province of Ontario Neurodevelopmental Disorders Network Registry were used in the analysis. Children (ages 6-13 years old) with a primary diagnosis of ADHD (n=146) or ASD (n=104) were administered the SCAS-P. Rasch Measurement Theory was used to assess measurement properties of the SCAS-P, including unidimensionality and item-level fit, category ordering, item targeting, person separation index and reliability and differential item functioning. The SCAS-P fit well to the Rasch model in both ADHD and ASD, including unidimensionality, satisfactory category ordering and goodness-of-fit. However, item-person measures showed poor precision at lower levels of anxiety. Some items showed differential item functioning, including items within the obsessive-compulsive, panic/agoraphobia and physical injury fears domains, suggesting that the presentation of anxiety may differ between ADHD and ASD. Overall, the results generally support the use of the SCAS-P to screen and monitor anxiety symptoms in children with ADHD and ASD. Future studies would benefit from examination of more severely anxious NDD cohort, including those with clinically diagnosed anxiety.

2.
Front Psychiatry ; 14: 1154519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333922

RESUMO

Background: Symptoms of depression are present in neurodegenerative disorders (ND). It is important that depression-related symptoms be adequately screened and monitored in persons living with ND. The Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) is a widely-used self-report measure to assess and monitor depressive severity across different patient populations. However, the measurement properties of the QIDS-SR have not been assessed in ND. Aim: To use Rasch Measurement Theory to assess the measurement properties of the Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) in ND and in comparison to major depressive disorder (MDD). Methods: De-identified data from the Ontario Neurodegenerative Disease Research Initiative (NCT04104373) and Canadian Biomarker Integration Network in Depression (NCT01655706) were used in the analyses. Five hundred and twenty participants with ND (Alzheimer's disease or mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia and Parkinson's disease) and 117 participants with major depressive disorder (MDD) were administered the QIDS-SR. Rasch Measurement Theory was used to assess measurement properties of the QIDS-SR, including unidimensionality and item-level fit, category ordering, item targeting, person separation index and reliability and differential item functioning. Results: The QIDS-SR fit well to the Rasch model in ND and MDD, including unidimensionality, satisfactory category ordering and goodness-of-fit. Item-person measures (Wright maps) showed gaps in item difficulties, suggesting poor precision for persons falling between those severity levels. Differences between mean person and item measures in the ND cohort logits suggest that QIDS-SR items target more severe depression than experienced by the ND cohort. Some items showed differential item functioning between cohorts. Conclusion: The present study supports the use of the QIDS-SR in MDD and suggest that the QIDS-SR can be also used to screen for depressive symptoms in persons with ND. However, gaps in item targeting were noted that suggests that the QIDS-SR cannot differentiate participants falling within certain severity levels. Future studies would benefit from examination in a more severely depressed ND cohort, including those with diagnosed clinical depression.

3.
Front Neuroinform ; 17: 1158378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274750

RESUMO

The effective sharing of health research data within the healthcare ecosystem can have tremendous impact on the advancement of disease understanding, prevention, treatment, and monitoring. By combining and reusing health research data, increasingly rich insights can be made about patients and populations that feed back into the health system resulting in more effective best practices and better patient outcomes. To achieve the promise of a learning health system, data needs to meet the FAIR principles of findability, accessibility, interoperability, and reusability. Since the inception of the Brain-CODE platform and services in 2012, the Ontario Brain Institute (OBI) has pioneered data sharing activities aligned with FAIR principles in neuroscience. Here, we describe how Brain-CODE has operationalized data sharing according to the FAIR principles. Findable-Brain-CODE offers an interactive and itemized approach for requesters to generate data cuts of interest that align with their research questions. Accessible-Brain-CODE offers multiple data access mechanisms. These mechanisms-that distinguish between metadata access, data access within a secure computing environment on Brain-CODE and data access via export will be discussed. Interoperable-Standardization happens at the data capture level and the data release stage to allow integration with similar data elements. Reusable - Brain-CODE implements several quality assurances measures and controls to maximize data value for reusability. We will highlight the successes and challenges of a FAIR-focused neuroinformatics platform that facilitates the widespread collection and sharing of neuroscience research data for learning health systems.

4.
Front Psychiatry ; 13: 816465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197877

RESUMO

The Ontario Brain Institute's "Brain-CODE" is a large-scale informatics platform designed to support the collection, storage and integration of diverse types of data across several brain disorders as a means to understand underlying causes of brain dysfunction and developing novel approaches to treatment. By providing access to aggregated datasets on participants with and without different brain disorders, Brain-CODE will facilitate analyses both within and across diseases and cover multiple brain disorders and a wide array of data, including clinical, neuroimaging, and molecular. To help achieve these goals, consensus methodology was used to identify a set of core demographic and clinical variables that should be routinely collected across all participating programs. Establishment of Common Data Elements within Brain-CODE is critical to enable a high degree of consistency in data collection across studies and thus optimize the ability of investigators to analyze pooled participant-level data within and across brain disorders. Results are also presented using selected common data elements pooled across three studies to better understand psychiatric comorbidity in neurological disease (Alzheimer's disease/amnesic mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia, and Parkinson's disease).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...