Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138667

RESUMO

The present work's main objective is to investigate the natural vibrations of the thin (Kirchhoff-Love) plate resting on time-fractional viscoelastic supports in terms of the Stochastic Finite Element Method (SFEM). The behavior of the supports is described by the fractional order derivatives of the Riemann-Liouville type. The subspace iteration method, in conjunction with the continuation method, is used as a tool to solve the non-linear eigenproblem. A deterministic core for solving structural eigenvibrations is the Finite Element Method. The probabilistic analysis includes the Monte-Carlo simulation and the semi-analytical approach, as well as the iterative generalized stochastic perturbation method. Probabilistic structural response in the form of up to the second-order characteristics is investigated numerically in addition to the input uncertainty level. Finally, the probabilistic relative entropy and the safety measure are estimated. The presented investigations can be applied to the dynamics of foundation plates resting on viscoelastic soil.

2.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298354

RESUMO

This paper provides a novel Finite Element (FE) simulation to estimate the out-of-plane response of masonry prisms retrofitted with Shape Memory Alloy (SMA) stripes. Empirical data were utilized to develop the computational analysis parameters (mechanical parameters for brick, mortar, and SMA materials) as well as the calibration of the computational FE-based models. For this purpose, a complete micro-modeling approach was applied, assuming perfect contact between mortar joints and brick units. A Concrete Damage Plasticity (CDP) model was developed to define the constitutive relation between brick and mortar. SMA stripes were mortar-installed on the surface of the prisms with a perfect connection. The masonry prism's verified computational model was utilized to generate parametric research to explore the effect of varying SMA stripe thicknesses and different SMA usage (Ni-Ti or Cu-Zn-Al). The FE study findings indicated that, independent of their material type or thickness, using SMA stripes greatly minimizes brick prism deterioration. SMA stripes greatly decreased residual displacement and plastic strains. Parametric tests, however, revealed that employing Ni-Ti SMA and increasing its thickness is more effective with respect to the masonry prism out-of-plane response than Cu-Zn-Al SMA.


Assuntos
Ligas , Ligas de Memória da Forma , Plásticos
3.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062471

RESUMO

The behavior of masonry shear walls reinforced with pseudoelastic Ni-Ti shape memory alloy (SMA) strips and engineered cementitious composite (ECC) sheets is the main focus of this paper. The walls were subjected to quasi-static cyclic in-plane loads and evaluated by using Abaqus. Eight cases of strengthening of masonry walls were investigated. Three masonry walls were strengthened with different thicknesses of ECC sheets using epoxy as adhesion, three walls were reinforced with different thicknesses of Ni-Ti strips in a cross form bonded to both the surfaces of the wall, and one was utilized as a reference wall without any reinforcing element. The final concept was a hybrid of strengthening methods in which the Ni-Ti strips were embedded in ECC sheets. The effect of mesh density on analytical outcomes is also discussed. A parameterized analysis was conducted to examine the influence of various variables such as the thickness of the Ni-Ti strips and that of ECC sheets. The results show that using the ECC sheet in combination with pseudoelastic Ni-Ti SMA strips enhances the energy absorption capacity and stiffness of masonry walls, demonstrating its efficacy as a reinforcing method.


Assuntos
Próteses e Implantes , Ligas de Memória da Forma , Resinas Epóxi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA