Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 146(1): 516, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31370610

RESUMO

Ultra-high-speed video microscopy and numerical modeling were used to assess the dynamics of microbubbles at the surface of urinary stones. Lipid-shell microbubbles designed to accumulate on stone surfaces were driven by bursts of ultrasound in the sub-MHz range with pressure amplitudes on the order of 1 MPa. Microbubbles were observed to undergo repeated cycles of expansion and violent collapse. At maximum expansion, the microbubbles' cross-section resembled an ellipse truncated by the stone. Approximating the bubble shape as an oblate spheroid, this study modeled the collapse by solving the multicomponent Euler equations with a two-dimensional-axisymmetric code with adaptive mesh refinement for fine resolution of the gas-liquid interface. Modeled bubble collapse and high-speed video microscopy showed a distinctive circumferential pinching during the collapse. In the numerical model, this pinching was associated with bidirectional microjetting normal to the rigid surface and toroidal collapse of the bubble. Modeled pressure spikes had amplitudes two-to-three orders of magnitude greater than that of the driving wave. Micro-computed tomography was used to study surface erosion and formation of microcracks from the action of microbubbles. This study suggests that engineered microbubbles enable stone-treatment modalities with driving pressures significantly lower than those required without the microbubbles.


Assuntos
Simulação por Computador , Elasticidade/fisiologia , Microscopia de Vídeo , Cálculos Urinários/fisiopatologia , Acústica , Meios de Contraste/farmacologia , Microbolhas , Microscopia de Vídeo/métodos , Modelos Biológicos , Cálculos Urinários/diagnóstico
2.
Proc Meet Acoust ; 35(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-32440311

RESUMO

A novel treatment modality incorporating calcium-adhering microbubbles has recently entered human clinical trials as a new minimally-invasive approach to treat urinary stones. In this treatment method, lipid-shell gas-core microbubbles can be introduced into the urinary tract through a catheter. Lipid moities with calcium-adherance properties incorporated into the lipid shell facilitate binding to stones. The microbubbles can be excited by an extracorporeal source of quasi-collimated ultrasound. Alternatively, the microbubbles can be excited by an intraluminal source, such as a fiber-optic laser. With either excitation technique, calcium-adhering microbubbles can significantly increase rates of erosion, pitting, and fragmentation of stones. We report here on new experiments using high-speed photography to characterize microbubble expansion and collapse. The bubble geometry observed in the experiments was used as one of the initial shapes for the numerical modeling. The modeling showed that the bubble dynamics strongly depends on bubble shape and stand-off distance. For the experimentally observed shape of microbubbles, the numerical modeling showed that the collapse of the microbubbles was associated with pressure increases of some two-to-three orders of magnitude compared to the excitation source pressures. This in-vitro study provides key insights into the use of microbubbles with calcium-adhering moieties in treatment of urinary stones.

3.
BJU Int ; 116(1): 9-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25402588

RESUMO

Kidney stone disease is endemic. Extracorporeal shockwave lithotripsy was the first major technological breakthrough where focused shockwaves were used to fragment stones in the kidney or ureter. The shockwaves induced the formation of cavitation bubbles, whose collapse released energy at the stone, and the energy fragmented the kidney stones into pieces small enough to be passed spontaneously. Can the concept of microbubbles be used without the bulky machine? The logical progression was to manufacture these powerful microbubbles ex vivo and inject these bubbles directly into the collecting system. An external source can be used to induce cavitation once the microbubbles are at their target; the key is targeting these microbubbles to specifically bind to kidney stones. Two important observations have been established: (i) bisphosphonates attach to hydroxyapatite crystals with high affinity; and (ii) there is substantial hydroxyapatite in most kidney stones. The microbubbles can be equipped with bisphosphonate tags to specifically target kidney stones. These bubbles will preferentially bind to the stone and not surrounding tissue, reducing collateral damage. Ultrasound or another suitable form of energy is then applied causing the microbubbles to induce cavitation and fragment the stones. This can be used as an adjunct to ureteroscopy or percutaneous lithotripsy to aid in fragmentation. Randall's plaques, which also contain hydroxyapatite crystals, can also be targeted to pre-emptively destroy these stone precursors. Additionally, targeted microbubbles can aid in kidney stone diagnostics by virtue of being used as an adjunct to traditional imaging methods, especially useful in high-risk patient populations. This novel application of targeted microbubble technology not only represents the next frontier in minimally invasive stone surgery, but a platform technology for other areas of medicine.


Assuntos
Difosfonatos/uso terapêutico , Cálculos Renais/terapia , Microbolhas/uso terapêutico , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Humanos , Cálculos Renais/diagnóstico
4.
Artigo em Inglês | MEDLINE | ID: mdl-22254315

RESUMO

Two methods for heating fluids in microliter- to milliliter-scale reaction chambers in disposable bioassay cartridges are analyzed and compared. Inductive heating requires no electrical contact between the energy source and the cartridge and uses a very inexpensive component in the cartridge. Resistive heating with a surface mount component requires electrical interconnection, but is generally conducive to low-cost off-the-shelf components. Typical power consumption for both inductive heating and resistive heating is consistent with battery-powered operation. A finite element model for heating an injection-molded plastic cartridge with a surface-mount resistor has been developed and validated through experiments on a 40 mm × 10 mm × 7.5 mm injection molded polystyrene cartridge with embedded 1 kΩ surface-mount resistors. A model of frequency-dependent heat generation in a novel inductive heating device is also presented.


Assuntos
Bioensaio/instrumentação , Fontes de Energia Elétrica , Calefação/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...