Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761996

RESUMO

Synthetic opals, a composition of homogeneous silica spheres in the mesoscale size range, have attracted the attention of scientists due to their favorable chemical and physical properties. Their chemical inertness and stability, biocompatibility, homogeneity, elevated specific surface area, and ease of functionalization of their surfaces make them a versatile nanotool. In the present study, the Stöber process was used to investigate the effect of parameters, such as reagent concentration and synthesis temperature, on the resulting silica particle size and structure. The optimal conditions for successfully obtaining homogeneous particles in the mesoscale range with high reproducibility were investigated. Several synthesis procedures and their dependence on the reaction temperature were presented to allow the selection of the assumed diameter of silica spheres. The numerous samples obtained were examined for size, homogeneity, structure, and specific surface area. On the basis of specific surface area measurements and nuclear magnetic resonance studies, the internal hierarchical structure of the spherical silica was confirmed as consisting of a solid core and layers of secondary spheres covered by a solid shell. Structural studies (X-ray Spectroscopy, X-ray Absorption Near-Edge Structure, and nuclear magnetic resonance), together with infrared vibrational spectroscopy, showed no dependence of the structure of the obtained mesospheres on the concentration of reagents and the size of the obtained particles.


Assuntos
Dióxido de Silício , Reprodutibilidade dos Testes , Tamanho da Partícula , Espectrofotometria Infravermelho , Temperatura
2.
Nanotechnology ; 34(41)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37343532

RESUMO

In the current work, we report on the synthesizing of a series of novel nanocomposite materials obtained by functionalizing the SBA-15 silica matrix with anchored iron phosphonate molecules and the following thermal treatment. The obtained results reveal the formation of a unique amorphic layer of Fe-based compounds on the surface of silica walls of SBA-15 channels as a result of the organic groups' decomposition after moderate thermal treatment. Due to their unique structure, represented in an active Fe-containing amorphous coating spread over a large surface area, these materials are of great interest for their potential applications in fields such as catalysis, adsorption, and non-linear optics. The obtained materials remain amorphous, preserving the SBA-15 mesoporous structure up to temperatures of approximately 800 °C, after which the partial melting of the silica backbone is observed with the simultaneous formation of nanocrystals inside the newly-formed glassy mass. All obtained materials were characterized using such techniques as thermogravimetry, transmission and scanning electron microscopy combined with energy dispersive x-ray spectroscopy mapping, Raman spectroscopy, N2sorption analysis, x-ray diffraction, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and SQUID measurements.

3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203222

RESUMO

Anchoringsingle-molecule magnets (SMMs) on the surface of nanostructures is gaining particular interest in the field of molecular magnetism. The accurate organization of SMMs on low-dimensional substrates enables controlled interactions and the possibility of individual molecules' manipulation, paving the route for a broad range of nanotechnological applications. In this comprehensive review article, the most studied types of SMMs are presented, and the quantum-mechanical origin of their magnetic behavior is described. The nanostructured matrices were grouped and characterized to outline to the reader their relevance for subsequent compounding with SMMs. Particular attention was paid to the fact that this process must be carried out in such a way as to preserve the initial functionality and properties of the molecules. Therefore, the work also includes a discussion of issues concerning both the methods of synthesis of the systems in question as well as advanced measurement techniques of the resulting complexes. A great deal of attention was also focused on the issue of surface-molecule interaction, which can affect the magnetic properties of SMMs, causing molecular crystal field distortion or magnetic anisotropy modification, which affects quantum tunneling or magnetic hysteresis, respectively. In our opinion, the analysis of the literature carried out in this way will greatly help the reader to design SMM-nanostructure systems.


Assuntos
Imãs , Nanoestruturas , Nanotecnologia , Anisotropia
4.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955460

RESUMO

In this article, we describe the antimicrobial properties of a new composite based on anodic aluminium oxide (AAO) membranes containing propyl-copper-phosphonate units arranged at a predetermined density inside the AAO channels. The samples were prepared with four concentrations of copper ions and tested as antimicrobial drug on four different strains of Escherichia coli (K12, R2, R3 and R4). For comparison, the same strains were tested with three types of antibiotics using the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than antibiotics such as ciprofloxacin, bleomycin and cloxacillin. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA. We have also observed that the intermolecular distances between the functional units play an important role for the antimicrobial properties of the used material. Hence, we utilised the idea of the 2D solvent to tailor them.


Assuntos
Cobre , Proteínas de Escherichia coli , Óxido de Alumínio , Antibacterianos/farmacologia , Bactérias , Cobre/farmacologia , DNA Bacteriano , DNA-Formamidopirimidina Glicosilase , Escherichia coli/genética
5.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613985

RESUMO

This article is devoted to a novel class of antimicrobial agents: nanocomposites composed of spherical silica and silver ions located at the silica's surface with the assumed distribution. Such materials are in high demand due to the increasing threat from bacterial strains that are becoming resistant to currently known antibiotics. In particular, we focus on materials that make it possible to limit the growth of bacterial colonies on a variety of tactile surfaces. In this paper, we present a method for preparing a silica-based nanocomposite containing silver ions and the analysis of their antimicrobial properties. Our research revealed that the presence of tested nanocomposite induces very high oxidative stress in the bacteria cell, damaging and modifying bacterial DNA, creating oxidized guanines, cytosines, or adenines, which causes its very rapid destruction, leading to cell death.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Dióxido de Silício/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948085

RESUMO

Photoluminescence is known to have huge potential for applications in studying biological systems. In that respect, phosphorescent dye molecules open the possibility to study the local slow solvent dynamics close to hard and soft surfaces and interfaces using the triplet state (TSD: triplet state solvation dynamics). However, for that purpose, probe molecules with efficient phosphorescence features are required with a fixed location on the surface. In this article, a potential TSD probe is presented in the form of a nanocomposite: we synthesize spherical silica particles with 2-naphthalene methanol molecules attached to the surface with a predefined surface density. The synthesis procedure is described in detail, and the obtained materials are characterized employing transmission electron microscopy imaging, Raman, and X-ray photoelectron spectroscopy. Finally, TSD experiments are carried out in order to confirm the phosphorescence properties of the obtained materials and the route to develop phosphorescent sensors at silica surfaces based on the presented results is discussed.


Assuntos
Substâncias Luminescentes , Nanocompostos/química , Naftalenos , Dióxido de Silício/química
7.
Materials (Basel) ; 14(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576625

RESUMO

A preliminary study of 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines as new potential antimicrobial drugs was performed. Special emphasis was placed on the selection of the structure of target pyridine derivatives with the highest biological activity against different types of Gram-stained bacteria by lipopolysaccharide (LPS). Herein, Escherichia coli model strains K12 (without LPS in its structure) and R2-R4 (with different lengths of LPS in its structure) were used. Studied target compounds were provided with yields ranging from 53% to 91% by the lipase-catalyzed one pot multicomponent reaction of various aromatic aldehydes with malononitrile, and thiols. The presented work showed that the antibacterial activity of the studied pyridines depends on their structure and affects the LPS of bacteria. Moreover, the influence of the pyridines on bacteria possessing smooth and rough LPS and oxidative damage to plasmid DNA caused by investigated compounds was indicated. Additionally, the modification of the bacterial DNA with the tested compounds was performed to detect new potential oxidative damages, which are recognized by the Fpg protein. The obtained damage modification values of the analyzed compounds were compared with the modifications after antibiotics were used in this type of research. The presented studies demonstrate that 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines can be used as substitutes for known antibiotics. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.

8.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299121

RESUMO

In this work, we have developed a chemical procedure enabling the preparation of highly ordered and vertically aligned mesoporous silica films containing selected contents of silver ions bonded inside the mesopore channels via anchoring propyl-carboxyl units. The procedure involves the electrochemically assisted self-assembly co-condensation of tetraethoxysilane and (3-cyanopropyl)triethoxysilane in the presence of cetyltrimethylammonium bromide as a surfactant, the subsequent hydrolysis of cyano groups into carboxylate ones, followed by their complexation with silver ions. The output materials have been electrochemically characterized with regard to the synthesis effectiveness in order to confirm and quantify the presence of the silver ions in the material. The mesostructure has been observed by transmission electron microscopy. We have pointed out that it is possible to finely tune the functionalization level by controlling the co-condensation procedure, notably the concentration of (3-cyanopropyl)triethoxysilane in the synthesis medium.


Assuntos
Dióxido de Silício/síntese química , Prata/química , Tensoativos/química , Cetrimônio/química , Porosidade
9.
Nanotechnology ; 32(41)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34214993

RESUMO

Here we employ a novel method for preparing the homogeneous copper pyrophosphate nanocrystals inside silica mesopores. In order to characterize and identify synthesized nanocrystals we performed theab initiostudies of theαphase of Cu2P2O7. The electronic and crystal structure were optimized within the density functional theory with the strong electron interactions in the3dstates on copper atoms and van der Waals corrections included in calculations. The relaxed lattice parameters and atomic positions agree very well with the results of the diffraction measurements for nanocrystalline copper pyrophosphates embedded inside SBA-15 silica pores. The obtained Mott insulating state with the energy gap of 3.17 eV exhibits the antiferromagnetic order with magnetic moments on copper atoms (0.8µB) that is compatible with the experimental studies. The phonon dispersion relations were obtained to study the dynamical properties of the Cu2P2O7lattice and the element-specific atomic vibrations were analyzed using the partial phonon density of states. The calculated Raman spectrum revealed the consistency of typical bands of Cu2P2O7with the experimental data. The investigation that combines a new synthesis of nanomaterials with the first-principles calculations is important for better characterization and understanding of the physical properties relevant for nanotechnological applications.

10.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467032

RESUMO

Silver and its nanoparticles (AgNPs) have different faces, providing different applications. In recent years, the number of positive nanosilver applications has increased substantially. It has been proven that AgNPs inhibit the growth and survival of bacteria, including human and animal pathogens, as well as fungi, protozoa and arthropods. Silver nanoparticles are known from their antiviral and anti-cancer properties; however, they are also very popular in medical and pharmaceutical nanoengineering as carriers for precise delivery of therapeutic compounds, in the diagnostics of different diseases and in optics and chemistry, where they act as sensors, conductors and substrates for various syntheses. The activity of AgNPs has not been fully discovered; therefore, we need interdisciplinary research to fulfil this knowledge. New forms of products with silver will certainly find application in the future treatment of many complicated and difficult to treat diseases. There is still a lack of appropriate and precise legal condition regarding the circulation of nanomaterials and the rules governing their safety use. The relatively low toxicity, relative biocompatibility and selectivity of nanoparticle interaction combined with the unusual biological properties allow their use in animal production as well as in bioengineering and medicine. Despite a quite big knowledge on this topic, there is still a need to organize the data on AgNPs in relation to specific microorganisms such as bacteria, viruses or fungi. We decided to put this knowledge together and try to show positive and negative effects on prokaryotic and eukaryotic cells.


Assuntos
Anti-Infecciosos/química , Doenças Transmissíveis/tratamento farmacológico , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/uso terapêutico , Prata/química
11.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143359

RESUMO

The ability to organize, separate and manipulate individual molecules and ions on a surface opens up almost unlimited opportunities. However, it often requires complex techniques and a proper support material. With this in mind, we show a new concept of 2D solid solvents and review a simple and efficient procedure which is based on nanostructured forms of silica with anchoring units. We describe silica supports, such as spherical nanoparticles and mesoporous silica structures, as well as review the methods for chemical modification of the surface of silica with the functional groups. Finally, we present a few particular examples of the immobilization of molecules and ions on the surface of 2D solid solvents along with the experimental investigation of the obtained materials.


Assuntos
Íons/química , Metais/química , Nanoestruturas/química , Dióxido de Silício/química , Solventes/química
12.
Materials (Basel) ; 13(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526883

RESUMO

The magnetic behaviour of Mn 12 -stearate single-molecule magnets (SMMs) ([ Mn 12 O 12 ( CH 3 ( CH 2 ) 16 CO 2 ) 16 ] · 2 CH 3 COOH · 4 H 2 O ) on the surface of 300 nm spherical silica nanoparticles were investigated. The SMMs were bonded at the silica surface with the assumed number of anchoring points, which influenced on their degree of freedom and distribution. In order to check the properties of Mn 12 -stearate molecules separated on the silica surface, and check their interactions, the samples containing four different concentration of spacers per single anchoring unit and variously bonded Mn 12 -stearate particles were prepared. The materials have been examined using Raman spectroscopy, transmission electron microscopy, and SQUID magnetometry. The results of magnetic measurements showed a correlation between the way of single-molecule magnets immobilization onto the silica spheres and the magnetic properties of the obtained hybrid materials.

13.
Materials (Basel) ; 13(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344810

RESUMO

The synthesis routes are presented for the preparation of nanocomposites composed of nanocrystals placed inside SBA-15 silica pores. The procedures assume treating the silica channels as nanoreactors, where nanocrystals are created as a result of thermal decomposition of internal functional units. Its sizes and chemical composition can be modified by the change of functional group types and density inside silica channels. The procedure is demonstrated by the example of copper pyrophosphate quantum dots and silver oxide nanoparticles inside silica mezochannels. The method can be easily adopted to other types of nanocrystals that can be synthesized inside silica nanoreactors.

14.
Nanomaterials (Basel) ; 9(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817142

RESUMO

Controlling the distribution of the Mn 12 -stearate, single-molecule magnets (SMMs) anchored on a select surface is expected to be a new method for tuning its interactions, and an investigation on the magnetic properties of separated magnetic molecules is also lacking. The anchoring of the SMMs at the surface with an assumed statistic distance between each other is not an easy task; nevertheless, in this work, we show a synthesis which allows for this in detail. The immobilization of the Mn 12 -stearate was demonstrated with the use of FTO glasses and spherical silica as substrates. Based on differential pulse anodic stripping voltammetry (DPASV) and transmission electron microscopy (TEM) observations, we proved the efficiency of the method proposed. We observed continuous decreasing the number of bonds, and afterward, decreasing in the number of immobilized molecules with an increasing the number of spacer units used for separation of the magnetic particles.

15.
Molecules ; 24(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261814

RESUMO

Electronics, and nanoelectronics in particular, represent one of the most promising branches of technology. The search for novel and more efficient materials seems to be natural here. Thus far, silicon-based devices have been monopolizing this domain. Indeed, it is justified since it allows for significant miniaturization of electronic elements by their densification in integrated circuits. Nevertheless, silicon has some restrictions. Since this material is applied in the bulk form, the miniaturization limit seems to be already reached. Moreover, smaller silicon-based elements (mainly processors) need much more energy and generate significantly more heat than their larger counterparts. In our opinion, the future belongs to nanostructured materials where a proper structure is obtained by means of bottom-up nanotechnology. A great example of a material utilizing nanostructuring is mesoporous silica, which, due to its outstanding properties, can find numerous applications in electronic devices. This focused review is devoted to the application of porous silica-based materials in electronics. We guide the reader through the development and most crucial findings of porous silica from its first synthesis in 1992 to the present. The article describes constant struggle of researchers to find better solutions to supercapacitors, lower the k value or redox-active hybrids while maintaining robust mechanical properties. Finally, the last section refers to ultra-modern applications of silica such as molecular artificial neural networks or super-dense magnetic memory storage.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Equipamentos e Provisões Elétricas , Porosidade
16.
Nanomaterials (Basel) ; 9(5)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109066

RESUMO

The Mn12 single-molecule magnets (SMMs) could be attached to the surface of spherical silica for the first time with a high probability. This allowed separation of the individual molecular magnets and direct microscopic observation of the SMMs. We described in detail how to fabricate such a composite material. The synthesis procedure proposed here is simple and efficient. We confirmed the efficiency of the method by transmission electron microscopy (TEM): single-molecule magnets were visible at the surface of a silica substrate. Based on TEM observation, we described how the molecules anchor to the surface of silica (the geometry of the magnetic molecule in regard to the surface of the substrate). The SQUID magnetometry showed that single-molecule magnet behaviour is kept intact after grafting. The attachment of the single-molecule magnets to the surface of silica allows to investigate their properties as separate molecules. This is particularly important in the analysis of magnetic properties such as magnetic states of the separated SMMs, their mutual interactions, and the influence of a silica support.

17.
Naturwissenschaften ; 105(1-2): 2, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209889

RESUMO

Durum wheat (Triticum turgidum var. durum) is an important crop in Europe, particularly in the Mediterranean countries. Fusarium head blight (FHB) is considered as one of the most damaging diseases, resulting in yield and quality reduction as well as contamination of grain with mycotoxins. Three winter durum wheat cultivars originating from Austria, Slovakia, and Poland were analyzed during 2012-2014 seasons for FHB incidence and Fusarium mycotoxin accumulation in harvested grain. Moreover, the effects of sowing density and delayed sowing date were evaluated in the climatic conditions of Southern Poland. Low disease severity was observed in 2011/2012 in all durum wheat cultivars analyzed, and high FHB occurrence was recorded in 2012/2013 and 2013/2014 seasons. Fusarium graminearum was the most abundant pathogen, followed by Fusarium avenaceum. Through all three seasons, cultivar Komnata was the most susceptible to FHB and to mycotoxin accumulation, while cultivars Auradur and IS Pentadur showed less symptoms. High susceptibility of cv. Komnata was reflected by the number of Fusarium isolates and elevated mycotoxin (deoxynivalenol, zearalenone, and moniliformin) content in the grain of this cultivar across all three seasons. Nivalenol was identified in the samples of cv. Komnata only. Genotype-dependent differences in FHB susceptibility were observed for the plants sown at optimal date but not at delayed sowing date. It can be hypothesized that cultivars bred in Austria and Slovakia show less susceptibility towards FHB than the cultivar from Poland because of the environmental conditions allowing for more efficient selection of breeding materials.


Assuntos
Fusarium/fisiologia , Micotoxinas/análise , Triticum/química , Região do Mediterrâneo , Micotoxinas/metabolismo , Especificidade da Espécie , Fatores de Tempo , Triticum/metabolismo
18.
J Craniomaxillofac Surg ; 45(11): 1835-1841, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935486

RESUMO

OBJECTIVE: To quantify the postoperative changes of the dental show and chin projection following SARME using 3D CBCT imaging. MATERIAL AND METHODS: 78 patients with transversal maxillary hypoplasia and mandibular hypoplasia who underwent SARME were enrolled into the study. A cone beam computed tomography (CBCT) scan was acquired preoperatively and at least 1 year postoperatively. 3D postoperative changes in the dental show and pogonion position were measured based on soft tissue and hard tissue landmarks. RESULTS: 68 patients (87%) exhibited a postoperative increase in the dental show. The dental show was increased by a mean of 2.2 ± 2.0 mm (p < 0.01). The mean horizontal and vertical displacement of the chin (pogonion) following SARME was 1.6 ± 2.5 mm posteriorly and 1.6 ± 2.0 mm inferiorly (p < 0.01). An inferior displacement of the maxilla and maxillary tooth as well as a consequent clockwise pitch of the mandible seemed to play a role in inducing these postoperative changes. CONCLUSION: An increase in dental show and a posterior and inferior displacement of the chin should be considered prior to SARME to prevent undesirable postoperative changes of the facial esthetics.


Assuntos
Queixo/anatomia & histologia , Tomografia Computadorizada de Feixe Cônico , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Maxila/diagnóstico por imagem , Maxila/cirurgia , Técnica de Expansão Palatina , Adolescente , Adulto , Cefalometria , Queixo/diagnóstico por imagem , Estética Dentária , Feminino , Humanos , Imageamento Tridimensional , Masculino , Mandíbula/anormalidades , Maxila/anormalidades , Pessoa de Meia-Idade , Estudos Retrospectivos , Dente , Adulto Jovem
19.
Nanoscale ; 9(33): 12110-12123, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28800139

RESUMO

The article is about a novel material for application in optoelectronic devices: mesoporous silica in the form of thin films with vertically aligned channels containing anchored propyl-copper-phosphonate functional groups. We described a synthesis route and carried out characterization of the structure to obtain its nonlinear optical (NLO) properties (second and third order harmonic generation). A quasi phase transition was found in the material resulting from modification of the functional group content. We also demonstrated that it is possible to modify NLO susceptibilities by tuning the distance between active polar units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...