Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31400829

RESUMO

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Cofilina 1/genética , Cofilina 2/genética , Destrina/genética , Cones de Crescimento/patologia , Regeneração Nervosa/genética , Traumatismos da Medula Espinal/genética , Animais , Axônios/patologia , Cofilina 1/metabolismo , Cofilina 2/metabolismo , Destrina/metabolismo , Cones de Crescimento/metabolismo , Microscopia Intravital , Camundongos , Microscopia Confocal , Neurônios/metabolismo , Neurônios/patologia , Ratos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Imagem com Lapso de Tempo
2.
Neuron ; 92(2): 419-434, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27720483

RESUMO

Injuries to the adult CNS often result in permanent disabilities because neurons lose the ability to regenerate their axon during development. Here, whole transcriptome sequencing and bioinformatics analysis followed by gain- and loss-of-function experiments identified Cacna2d2, the gene encoding the Alpha2delta2 subunit of voltage-gated calcium channels (VGCCs), as a developmental switch that limits axon growth and regeneration. Cacna2d2 gene deletion or silencing promoted axon growth in vitro. In vivo, Alpha2delta2 pharmacological blockade through Pregabalin (PGB) administration enhanced axon regeneration in adult mice after spinal cord injury (SCI). As PGB is already an established treatment for a wide range of neurological disorders, our findings suggest that targeting Alpha2delta2 may be a novel treatment strategy to promote structural plasticity and regeneration following CNS trauma.


Assuntos
Axônios/fisiologia , Canais de Cálcio/genética , Crescimento Neuronal/genética , Neurônios/metabolismo , Regeneração/genética , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sistema Nervoso Central , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crescimento Neuronal/efeitos dos fármacos , Pregabalina/farmacologia , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos , Análise de Sequência de RNA
3.
Nat Commun ; 5: 3527, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686445

RESUMO

Axonal regenerative failure is a major cause of neurological impairment following central nervous system (CNS) but not peripheral nervous system (PNS) injury. Notably, PNS injury triggers a coordinated regenerative gene expression programme. However, the molecular link between retrograde signalling and the regulation of this gene expression programme that leads to the differential regenerative capacity remains elusive. Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. Thus, we find a specific epigenetic mechanism that regulates axonal regeneration of CNS axons, suggesting novel targets for clinical application.


Assuntos
Axônios/enzimologia , Sistema Nervoso Central/fisiologia , Epigênese Genética , Regeneração Nervosa , Traumatismos da Medula Espinal/enzimologia , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Feminino , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Transcrição de p300-CBP/genética
4.
Exp Neurol ; 242: 11-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22836145

RESUMO

Upon spinal cord injury, severed axons and the surrounding tissue undergo a series of pathological changes, including retraction of proximal axon ends, degeneration of distal axon ends and formation of a dense fibrotic scar that inhibits regenerative axonal growth. Until recently it was technically challenging to study these dynamic events in the mammalian central nervous system. Here, we describe and discuss the recently established genetic tract tracing approach of in vivo imaging. This technique allows studying acute pathological events following a spinal cord lesion. In addition, the novel development of chronic spinal cord preparations such as the implanted spinal chamber now also enables long-term imaging studies. Hence, in vivo imaging allows the direct observation of acute and chronic dynamic degenerative and regenerative events of individual neurons after traumatic injury in the living animal.


Assuntos
Neurônios/fisiologia , Imagem Óptica , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/patologia , Dinâmica não Linear , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
5.
Science ; 331(6019): 928-31, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21273450

RESUMO

Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-ß signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.


Assuntos
Axônios/fisiologia , Cicatriz/prevenção & controle , Microtúbulos/metabolismo , Paclitaxel/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal , Animais , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cicatriz/patologia , Feminino , Gânglios Espinais/citologia , Cinesinas/metabolismo , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais , Proteína Smad2/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA