Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 44, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553684

RESUMO

Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Mitocondriais , Células Precursoras de Oligodendrócitos , Transtornos Psicomotores , Camundongos , Animais , Regulação para Baixo/genética , Células Precursoras de Oligodendrócitos/metabolismo , Ácido Aspártico/metabolismo , Isoformas de Proteínas/metabolismo , Ácidos Graxos
2.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458178

RESUMO

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Assuntos
Vesículas Extracelulares , Células-Tronco Hematopoéticas , NADP/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/fisiologia , Autorrenovação Celular
3.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827632

RESUMO

Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and ß-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.


Assuntos
Proteínas Mitocondriais/metabolismo , Doenças Neuromusculares/metabolismo , Animais , Transporte de Elétrons/genética , Humanos , Modelos Biológicos , Mutação/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/enzimologia , Fenótipo
4.
Front Cell Neurosci ; 15: 773709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095421

RESUMO

Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) deficiency is an ultra-rare genetic disease characterized by global hypomyelination and brain atrophy, caused by mutations in the SLC25A12 gene leading to a reduction in AGC1 activity. In both neuronal precursor cells and oligodendrocytes precursor cells (NPCs and OPCs), the AGC1 determines reduced proliferation with an accelerated differentiation of OPCs, both associated with gene expression dysregulation. Epigenetic regulation of gene expression through histone acetylation plays a crucial role in the proliferation/differentiation of both NPCs and OPCs and is modulated by mitochondrial metabolism. In AGC1 deficiency models, both OPCs and NPCs show an altered expression of transcription factors involved in the proliferation/differentiation of brain precursor cells (BPCs) as well as a reduction in histone acetylation with a parallel alteration in the expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, histone acetylation dysfunctions have been dissected in in vitro models of AGC1 deficiency OPCs (Oli-Neu cells) and NPCs (neurospheres), in physiological conditions and following pharmacological treatments. The inhibition of HATs by curcumin arrests the proliferation of OPCs leading to their differentiation, while the inhibition of HDACs by suberanilohydroxamic acid (SAHA) has only a limited effect on proliferation, but it significantly stimulates the differentiation of OPCs. In NPCs, both treatments determine an alteration in the commitment toward glial cells. These data contribute to clarifying the molecular and epigenetic mechanisms regulating the proliferation/differentiation of OPCs and NPCs. This will help to identify potential targets for new therapeutic approaches that are able to increase the OPCs pool and to sustain their differentiation toward oligodendrocytes and to myelination/remyelination processes in AGC1 deficiency, as well as in other white matter neuropathologies.

5.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514314

RESUMO

Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor ßs (TGFßs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Mitocôndrias/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Inativação Gênica , Lactatos/metabolismo , Ventrículos Laterais/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Neurônios/metabolismo , Fator de Crescimento Derivado de Plaquetas , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
6.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510000

RESUMO

Members of the mitochondrial carrier (MC) protein family transport various molecules across the mitochondrial inner membrane to interlink steps of metabolic pathways and biochemical processes that take place in different compartments; i.e., are localized partly inside and outside the mitochondrial matrix. MC substrates consist of metabolites, inorganic anions (such as phosphate and sulfate), nucleotides, cofactors and amino acids. These compounds have been identified by in vitro transport assays based on the uptake of radioactively labeled substrates into liposomes reconstituted with recombinant purified MCs. By using this approach, 18 human, plant and yeast MCs for amino acids have been characterized and shown to transport aspartate, glutamate, ornithine, arginine, lysine, histidine, citrulline and glycine with varying substrate specificities, kinetics, influences of the pH gradient, and capacities for the antiport and uniport mode of transport. Aside from providing amino acids for mitochondrial translation, the transport reactions catalyzed by these MCs are crucial in energy, nitrogen, nucleotide and amino acid metabolism. In this review we dissect the transport properties, phylogeny, regulation and expression levels in different tissues of MCs for amino acids, and summarize the main structural aspects known until now about MCs. The effects of their disease-causing mutations and manipulation of their expression levels in cells are also considered as clues for understanding their physiological functions.


Assuntos
Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Humanos , Proteínas de Transporte da Membrana Mitocondrial/classificação , Proteínas de Transporte da Membrana Mitocondrial/genética , Filogenia , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1422-1435, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28235644

RESUMO

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca2+-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.


Assuntos
Sistemas de Transporte de Aminoácidos/biossíntese , Ácido Aspártico/análogos & derivados , Proliferação de Células , Regulação para Baixo , Proteínas Mitocondriais/biossíntese , Neurônios/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/deficiência , Antiporters/genética , Antiporters/metabolismo , Ácido Aspártico/biossíntese , Linhagem Celular , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Neurônios/patologia , Transtornos Psicomotores/genética , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/patologia
8.
Biochim Biophys Acta Bioenerg ; 1858(2): 137-146, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836698

RESUMO

CoA is an essential cofactor that holds a central role in cell metabolism. Although its biosynthetic pathway is conserved across the three domains of life, the subcellular localization of the eukaryotic biosynthetic enzymes and the mechanism behind the cytosolic and mitochondrial CoA pools compartmentalization are still under debate. In humans, the transport of CoA across the inner mitochondrial membrane has been ascribed to two related genes, SLC25A16 and SLC25A42 whereas in D. melanogaster genome only one gene is present, CG4241, phylogenetically closer to SLC25A42. CG4241 encodes two alternatively spliced isoforms, dPCoAC-A and dPCoAC-B. Both isoforms were expressed in Escherichia coli, but only dPCoAC-A was successfully reconstituted into liposomes, where transported dPCoA and, to a lesser extent, ADP and dADP but not CoA, which was a powerful competitive inhibitor. The expression of both isoforms in a Saccharomyces cerevisiae strain lacking the endogenous putative mitochondrial CoA carrier restored the growth on respiratory carbon sources and the mitochondrial levels of CoA. The results reported here and the proposed subcellular localization of some of the enzymes of the fruit fly CoA biosynthetic pathway, suggest that dPCoA may be synthesized and phosphorylated to CoA in the matrix, but it can also be transported by dPCoAC to the cytosol, where it may be phosphorylated to CoA by the monofunctional dPCoA kinase. Thus, dPCoAC may connect the cytosolic and mitochondrial reactions of the CoA biosynthetic pathway without allowing the two CoA pools to get in contact.


Assuntos
Coenzima A/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Cinética , Biossíntese de Proteínas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
9.
Biomacromolecules ; 16(2): 550-7, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25543760

RESUMO

The aim of this work was to evaluate the potential of INVITE-based nanomicelles, an amphiphilic polymer constituted by inulin (INU) and vitamin E (VITE), as a platform for improving the biopharmaceutical properties of hydrophobic drugs. For this purpose, curcumin was selected as a model and curcumin-INVITE nanomicelles were prepared. This drug delivery system was characterized both in vitro for what concerns the physicochemical properties, blood compatibility, and cellular uptake, and in vivo for the evaluation of the pharmacokinetic profile. It was found that these nanomicelles released curcumin in a controlled manner, and they were able to penetrate cellular membrane. Moreover, they showed an improved pharmacokinetic profile after intravenous administration. In conclusion, INVITE micelles might constitute promising nanocarriers for improving the biopharmaceutical performance of hydrophobic drugs.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Inulina/administração & dosagem , Micelas , Nanopartículas/administração & dosagem , alfa-Tocoferol/administração & dosagem , Administração Intravenosa , Animais , Curcumina/metabolismo , Portadores de Fármacos/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Células HEK293 , Humanos , Inulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , alfa-Tocoferol/metabolismo
10.
Dalton Trans ; 43(43): 16252-64, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25069996

RESUMO

The 18 kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. The TSPO-selective ligand 2-(8-(2-(bis-(pyridin-2-yl-methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfills the requirements of a bifunctional chelate approach, has been used to synthesize coordination complexes containing either Pt (1) or Re (3), or both metal ions (2). The new metal complexes showed a cellular uptake markedly greater than that of the precursor metallic compounds and were also able to induce apoptosis in C6 glioma cells. The good cytotoxicity of the free ligand CB256 towards C6, A2780, and A2780cisR tumor cell lines was attenuated after coordination of the dipicolylamine moiety to Pt while coordination of the imidazopyridine residue to Re reduces the affinity towards TSPO. The results of the present investigation are essential for the design of new imidazopyridine bifunctional chelate ligands targeted to TSPO.


Assuntos
Complexos de Coordenação/síntese química , Platina/química , Receptores de GABA/metabolismo , Rênio/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , Humanos , Ligantes , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Ligação Proteica , Receptores de GABA/química , Ácido Valproico/análogos & derivados , Ácido Valproico/química
11.
Mol Pharm ; 11(3): 859-71, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24410438

RESUMO

Translocator protein 18 kDa (TSPO) is a promising target for molecular imaging and for targeted drug delivery to tumors overexpressing TSPO. In our previous work, new macromolecular conjugates with a high affinity and selectivity for TSPO were prepared by conjugating the biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) polymer with two potent and selective TSPO ligands, namely, compounds 1 and 2. Based on this, nanoparticle delivery systems (NPs), employing TSPO ligand-PLGA conjugated (PLGA-TSPO) polymers, were prepared. Furthermore, to evaluate the ability of the new NPs to be used as a drug delivery systems for anticancer therapy, PLGA-TSPO NPs were loaded with 5-fluorouracil (5-FU), chosen as a model hydrophilic anticancer drug. The main goal of this work was to investigate the synergistic potential of using NP conjugates PLGA-TSPO, TSPO ligands being pro-apoptotic agents, to simultaneously deliver a cytotoxic anticancer drug. To better highlight the occurrence of synergistic effects, dual drug loaded PLGA NPs (PLGA NPs/5-FU/1) and dual drug loaded PLGA-TSPO NPs (PLGA-TSPO NPs/5-FU/1), with 5-FU and TSPO ligand 1 physically incorporated together, were also prepared and characterized. The particle size and size distribution, surface morphology, and drug encapsulation efficiency, as well as the drug release kinetics, were investigated. In vitro cytotoxicity studies were carried out on C6 glioma cells overexpressing TSPO, and to evaluate the potential uptake of these nanoparticulate systems, the internalization of fluorescent labeled PLGA-TSPO NPs (FITC-PLGA-TSPO NPs) was also investigated by fluorescence microscopy. Results demonstrated that PLGA-TSPO NPs/5-FU and dual drug loaded PLGA NPs/5-FU/1 and PLGA-TSPO NPs/5-FU/1 could significantly enhance toxicity against human cancer cells due to the synergistic effect of the TSPO ligand 1 with the anticancer drug 5-FU.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Proteínas de Transporte/metabolismo , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Glioma/tratamento farmacológico , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Receptores de GABA-A/metabolismo , Antimetabólitos Antineoplásicos/farmacocinética , Apoptose , Varredura Diferencial de Calorimetria , Proteínas de Transporte/administração & dosagem , Proliferação de Células , Portadores de Fármacos , Fluoruracila/farmacocinética , Glioma/metabolismo , Glioma/patologia , Humanos , Microscopia de Fluorescência , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores de GABA-A/administração & dosagem , Distribuição Tecidual , Células Tumorais Cultivadas
12.
Biochim Biophys Acta ; 1837(2): 326-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296033

RESUMO

The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.


Assuntos
Adenosina Fosfossulfato/metabolismo , Genes Fúngicos/genética , Mitocôndrias/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Transporte Biológico/genética , Coenzima A/metabolismo , Escherichia coli/metabolismo , Teste de Complementação Genética , Glutationa/metabolismo , Cinética , Metionina/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
13.
Bioconjug Chem ; 24(9): 1415-28, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23837837

RESUMO

The aim of the present review is to give a concise and updated analysis of the imaging tools for the visualization of activated microglia. After an overview on the important pathologies where activated microglia are involved, we first describe the role played by the translocator protein-18 kDa (TSPO) as an important target for the visualization of activated microglia. Second, imaging tools based on TSPO ligands radiolabeled for positron emission tomography (PET) are summarized with particular emphasis to the TSPO ligands alternative to the standard radioligand [(11)C]PK11195 or (R)-[(11)C]PK11195. In this regard, an updated list of (11)C- and (18)F-labeled TSPO radioligands is shown. Moreover, a detailed analysis based on TSPO ligands bearing fluorescent probes for fluorescence microscopy is also provided. This last optical imaging technique represents an area of large and increasing interest due to the advantages offered by the use of simple instrumentation and safer experimental conditions. The scope and limitations of the nuclear and optical imaging techniques are discussed. Finally, a perspective on the plausible advances in this area is also presented.


Assuntos
Microglia/metabolismo , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/análise , Animais , Humanos , Isoquinolinas , Ligantes , Microglia/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Receptores de GABA/metabolismo
14.
Ann Neurol ; 74(6): 873-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24596948

RESUMO

OBJECTIVE: To identify a genetic cause for migrating partial seizures in infancy (MPSI). METHODS: We characterized a consanguineous pedigree with MPSI and obtained DNA from affected and unaffected family members. We analyzed single nucleotide polymorphism 500K data to identify regions with evidence of linkage. We performed whole exome sequencing and analyzed homozygous variants in regions of linkage to identify a candidate gene and performed functional studies of the candidate gene SLC25A22. RESULTS: In a consanguineous pedigree with 2 individuals with MPSI, we identified 2 regions of linkage, chromosome 4p16.1-p16.3 and chromosome 11p15.4-pter. Using whole exome sequencing, we identified 8 novel homozygous variants in genes in these regions. Only 1 variant, SLC25A22 c.G328C, results in a change of a highly conserved amino acid (p.G110R) and was not present in control samples. SLC25A22 encodes a glutamate transporter with strong expression in the developing brain. We show that the specific G110R mutation, located in a transmembrane domain of the protein, disrupts mitochondrial glutamate transport. INTERPRETATION: We have shown that MPSI can be inherited and have identified a novel homozygous mutation in SLC25A22 in the affected individuals. Our data strongly suggest that SLC25A22 is responsible for MPSI, a severe condition with few known etiologies. We have demonstrated that a combination of linkage analysis and whole exome sequencing can be used for disease gene discovery. Finally, as SLC25A22 had been implicated in the distinct syndrome of neonatal epilepsy with suppression bursts on electroencephalogram, we have expanded the phenotypic spectrum associated with SLC25A22.


Assuntos
Epilepsia Neonatal Benigna/genética , Exoma/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Adulto , Consanguinidade , Epilepsia Neonatal Benigna/fisiopatologia , Feminino , Ligação Genética/genética , Humanos , Recém-Nascido , Masculino , Linhagem
15.
Mol Genet Metab ; 104(4): 501-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21914561

RESUMO

Citrin is the liver-specific isoform of the mitochondrial aspartate/glutamate carrier (AGC2). AGC2 deficiency is an autosomal recessive disorder with two age related phenotypes: neonatal intrahepatic cholestasis (NICCD, OMIM#605814) and adult-onset type II citrullinemia (CTLN2, OMIM#603471). NICCD arises within the first few weeks of life resulting in prolonged cholestasis and metabolic abnormalities including aminoacidemia and galactosuria. Usually symptoms disappear within the first year of life, thus making a diagnosis difficult after this time. In this study we report a new Caucasian case of NICCD, a seven week old Romanian boy with prolonged jaundice. Sequencing of the AGC2 gene showed a novel homozygous missense double-nucleotide (doublet) mutation, which produces the change of the glycine at position 437 into glutamate. Functional studies, carried out on the recombinant mutant protein, for the first time demonstrated, that NICCD is caused by a reduced transport activity of AGC2. The presence of AGC2 deficiency in other ethnic groups besides Asian population suggests further consideration for NICCD diagnosis of any neonate with an unexplained cholestasis; a prompt diagnosis is crucial to resolve the metabolic decompensation with an appropriate dietary treatment.


Assuntos
Citrulinemia/diagnóstico , Proteínas de Transporte da Membrana Mitocondrial/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Citrulinemia/genética , Sequência Conservada , Estudos de Associação Genética , Homozigoto , Humanos , Lactente , Masculino , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sequência de DNA , População Branca
16.
J Biol Chem ; 283(22): 15300-8, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18364350

RESUMO

Ca2+ concentration in peroxisomal matrix ([Ca2+](perox)) has been monitored dynamically in mammalian cells expressing variants of Ca2+-sensitive aequorin specifically targeted to peroxisomes. Upon stimulation with agonists that induce Ca2+ release from intracellular stores, peroxisomes transiently take up Ca2+ reaching peak values in the lumen as high as 50-100 microm, depending on cell types. Also in resting cells, peroxisomes sustain a Ca2+ gradient, [Ca2+](perox) being approximately 20-fold higher than [Ca2+] in the cytosol ([Ca2+](cyt)). The properties of Ca2+ traffic across the peroxisomal membrane are different from those reported for other subcellular organelles. The sensitivity of peroxisomal Ca2+ uptake to agents dissipating H+ and Na+ gradients unravels the existence of a complex bioenergetic framework including V-ATPase, Ca2+/H+, and Ca2+/Na+ activities whose components are yet to be identified at a molecular level. The different [Ca2+](perox) of resting and stimulated cells suggest that Ca2+ could play an important role in the regulation of peroxisomal metabolism.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Membranas Intracelulares/metabolismo , Peroxissomos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Transporte de Íons/fisiologia , Prótons , Sódio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
17.
J Biol Chem ; 279(29): 30722-30, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15123600

RESUMO

The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites, nucleotides, and cofactors through this membrane and thereby connect and/or regulate cytoplasm and matrix functions. ATP-Mg is transported in exchange for phosphate, but no protein has ever been associated with this activity. We have isolated three human cDNAs that encode proteins of 458, 468, and 489 amino acids with 66-75% similarity and with the characteristic features of the mitochondrial carrier family in their C-terminal domains and three EF-hand Ca(2+)-binding motifs in their N-terminal domains. These proteins have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties and their targeting to mitochondria demonstrate that they are isoforms of the ATP-Mg/Pi carrier described in the past in whole mitochondria. The tissue specificity of the three isoforms shows that at least one isoform was present in all of the tissues investigated. Because phosphate recycles via the phosphate carrier in mitochondria, the three isoforms of the ATP-Mg/Pi carrier are most likely responsible for the net uptake or efflux of adenine nucleotides into or from the mitochondria and hence for the variation in the matrix adenine nucleotide content, which has been found to change in many physiopathological situations.


Assuntos
Antiporters/química , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/química , Proteínas de Transporte de Fosfato/fisiologia , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Cálcio/química , Catálise , Citoplasma/metabolismo , DNA Complementar/metabolismo , Difusão , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lipossomos/metabolismo , Magnésio/química , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fosfatos/química , Fosfolipídeos/química , Plasmídeos/metabolismo , Potássio/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Distribuição Tecidual
18.
J Biol Chem ; 278(40): 38686-92, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12851387

RESUMO

The Ca(2+)-sensitive dehydrogenases of the mitochondrial matrix are, so far, the only known effectors to allow Ca2+ signals to couple the activation of plasma membrane receptors to the stimulation of aerobic metabolism. In this study, we demonstrate a novel mechanism, based on Ca(2+)-sensitive metabolite carriers of the inner membrane. We expressed in Chinese hamster ovary cells aralar1 and citrin, aspartate/glutamate exchangers that have Ca(2+)-binding sites in their sequence, and measured mitochondrial Ca2+ and ATP levels as well as cytosolic Ca2+ concentration with targeted recombinant probes. The increase in mitochondrial ATP levels caused by cell stimulation with Ca(2+)-mobilizing agonists was markedly larger in cells expressing aralar and citrin (but not truncated mutants lacking the Ca(2+)-binding site) than in control cells. Conversely, the cytosolic and the mitochondrial Ca2+ signals were the same in control cells and cells expressing the different aralar1 and citrin variants, thus ruling out an indirect effect through the Ca(2+)-sensitive dehydrogenases. Together, these data show that the decoding of Ca2+ signals in mitochondria depends on the coordinate activity of mitochondrial enzymes and carriers, which may thus represent useful pharmacological targets in this process of major pathophysiological interest.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Cálcio/metabolismo , Ácido Glutâmico/química , Mitocôndrias/metabolismo , Proteínas Recombinantes/metabolismo , Equorina/farmacologia , Animais , Sítios de Ligação , Western Blotting , Células CHO , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Cricetinae , Citosol/metabolismo , Humanos , Luciferases/metabolismo , Medições Luminescentes , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos/metabolismo , Oxigênio/metabolismo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...