Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1159728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153216

RESUMO

In ski mountaineering it is the goal to reach the top of a mountain by sheer muscle force. The specific equipment (flexible boot, only toe fixated binding, and a skin on the ski to prevent from slipping backwards) enables the skier to move up the hill ergonomically, where the heel part of the binding offers a special adaptation possibility. The so-called riser height supports the heel standing height and can be adjusted to individually preferred settings. General recommendations suggest using lower heel support in flat ascents and higher heel support in steep ascents to maintain upright posture and lower the strain. Still, it remains unclear whether the application of riser height affects the physiological response during ski mountaineering. This study was designed to investigate the effects of riser height on physiological response during indoor ski mountaineering. Nineteen participants took part in the study and walked on a treadmill with ski mountaineering equipment. The three available riser heights (low, medium, and high) were applied randomized at 8%, 16%, and 24% gradient. Results show that global physiological measurements like heart rate (p = 0.34), oxygen uptake (p = 0.26) or blood lactate (p = 0.38) values were not affected by changes in riser height. But local measurements of muscle oxygen saturation were affected by the riser height. Additionally comfort and rating of perceived exertion were also prone to changes in riser height. These results suggest differences on local measurements and perceived parameters, while global physiological measurements did not change. The results are in line with the existing recommendations but need to be confirmed in an outdoor setting as well.

2.
Sensors (Basel) ; 23(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112338

RESUMO

Skiing technique, and performance are impacted by the interplay between ski and snow. The resulting deformation characteristics of the ski, both temporally and segmentally, are indicative of the unique multi-faceted nature of this process. Recently, a PyzoFlex® ski prototype was presented for measuring the local ski curvature (w″), demonstrating high reliability and validity. The value of w″ increases as a result of enlargement of the roll angle (RA) and the radial force (RF) and consequently minimizes the radius of the turn, preventing skidding. This study aims to analyze segmental w″ differences along the ski, as well as to investigate the relationship among segmental w″, RA, and RF for both the inner and outer skis and for different skiing techniques (carving and parallel ski steering). A skier performed 24 carving and 24 parallel ski steering turns, during which a sensor insole was placed in the boot to determine RA and RF, and six PyzoFlex® sensors were used to measure the w″ progression along the left ski (w1-6″). All data were time normalized over a left-right turn combination. Correlation analysis using Pearson's correlation coefficient (r) was conducted on the mean values of RA, RF, and segmental w1-6″ for different turn phases [initiation, center of mass direction change I (COM DC I), center of mass direction change II (COM DC II), completion]. The results of the study indicate that, regardless of the skiing technique, the correlation between the two rear sensors (L2 vs. L3) and the three front sensors (L4 vs. L5, L4 vs. L6, L5 vs. L6) was mostly high (r > 0.50) to very high (r > 0.70). During carving turns, the correlation between w″ of the rear (w1-3″) and that of front sensors (w4-6″) of the outer ski was low (ranging between -0.21 and 0.22) with the exception of high correlations during COM DC II (r = 0.51-0.54). In contrast, for parallel ski steering, the r between the w″ of the front and rear sensors was mostly high to very high, especially for COM DC I and II (r = 0.48-0.85). Further, a high to very high correlation (r ranging between 0.55 and 0.83) among RF, RA, and w″ of the two sensors located behind the binding (w2″,w3″) in COM DC I and II for the outer ski during carving was found. However, the values of r were low to moderate (r = 0.04-0.47) during parallel ski steering. It can be concluded that homogeneous ski deflection along the ski is an oversimplified picture, as the w″ pattern differs not only temporally but also segmentally, depending on the employed technique and turn phase. In carving, the rear segment of the outer ski is considered to have a pivotal role for creating a clean and precise turn on the edge.


Assuntos
Esqui , Rádio (Anatomia) , Reprodutibilidade dos Testes , Cognição , Fenômenos Biomecânicos
3.
Front Sports Act Living ; 4: 886025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060627

RESUMO

In ski mountaineering, equipment and its interaction with the exercising human plays an important role. The binding, as the crucial connection between boot and ski, must ensure safe fixation during downhill skiing and a free moving heel when walking uphill. Uphill, the binding offers the possibility to adopt the height of the heel (riser height) to personal preferences and the steepness of the ascent. This possible adjustment and its influence on various biomechanical parameters are the focus of this work. For this study, 19 male leisure ski mountaineers were tested on a treadmill, ascending at a fixed submaximal speed (3.9 ± 0.4 km·h-1) at 8, 16, and 24% gradient and with three heel riser heights, low (0 cm), medium (3.0 cm) and high (5.3 cm). The applied biomechanical measurement systems included a 3D motion capture system in sagittal plane, pressure insoles, a with strain gauges instrumented pole, spirometry and a comfort scale. Step length and step frequency were influenced by the riser height and the gradient (p ≤ 0.001). The high riser height decreased the step length by 5% compared to the low riser height over all tested gradients, while steps were 9.2% longer at the 24% gradient compared to the 8% gradient over all three riser heights. The high riser height revealed a force impulse of the pole 13% lower than using the low riser height (p < 0.001). Additionally, the high riser height reduced the range of motion of the knee joint and the ankle joint compared to the low riser height (p < 0.001). Therefore, advantageous settings can be derived, with the low riser height creating proper range of motion for ankle, knee and hip joint and higher propulsion via the pole at 8%, while higher riser heights like the medium setting do so at steeper gradients. These findings are in line with the conducted comfort scale. We would not recommend the highest riser height for the analyzed gradients in this study, but it might be an appropriate choice for higher gradients.

4.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451048

RESUMO

Breathing pattern (BP) is related to key psychophysiological and performance variables during exercise. Modern wearable sensors and data analysis techniques facilitate BP analysis during running but are lacking crucial validation steps in their deployment. Thus, we sought to evaluate a wearable garment with respiratory inductance plethysmography (RIP) sensors in combination with a custom-built algorithm versus a reference spirometry system to determine its concurrent validity in detecting flow reversals (FR) and BP. Twelve runners completed an incremental running protocol to exhaustion with synchronized spirometry and RIP sensors. An algorithm was developed to filter, segment, and enrich the RIP data for FR and BP estimation. The algorithm successfully identified over 99% of FR with an average time lag of 0.018 s (-0.067,0.104) after the reference system. Breathing rate (BR) estimation had low mean absolute percent error (MAPE = 2.74 [0.00,5.99]), but other BP components had variable accuracy. The proposed system is valid and practically useful for applications of BP assessment in the field, especially when measuring abrupt changes in BR. More studies are needed to improve BP timing estimation and utilize abdominal RIP during running.


Assuntos
Corrida , Dispositivos Eletrônicos Vestíveis , Pletismografia , Respiração , Taxa Respiratória , Espirometria
5.
J Sports Sci Med ; 20(2): 250-257, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34211317

RESUMO

Competitive ski mountaineering (SKIMO) has achieved great popularity within the past years. However, knowledge about the predictors of performance and physiological response to SKIMO racing is limited. Therefore, 21 male SKIMO athletes split into two performance groups (elite: VO2max 71.2 ± 6.8 ml· min-1· kg-1 vs. sub-elite: 62.5 ± 4.7 ml· min-1· kg-1) were tested and analysed during a vertical SKIMO race simulation (523 m elevation gain) and in a laboratory SKIMO specific ramp test. In both cases, oxygen consumption (VO2), heart rate (HR), blood lactate and cycle characteristics were measured. During the race simulation, the elite athletes were approximately 5 min faster compared with the sub-elite (27:15 ± 1:16 min; 32:31 ± 2:13 min; p < 0.001). VO2 was higher for elite athletes during the race simulation (p = 0.046) and in the laboratory test at ventilatory threshold 2 (p = 0.005) and at maximum VO2 (p = 0.003). Laboratory maximum power output is displayed as treadmill speed and was higher for elite than sub-elite athletes (7.4 ± 0.3 km h-1; 6.6 ± 0.3 km h-1; p < 0.001). Lactate values were higher in the laboratory maximum ramp test than in the race simulation (p < 0.001). Pearson's correlation coefficient between race time and performance parameters was highest for velocity and VO2 related parameters during the laboratory test (r > 0.6). Elite athletes showed their superiority in the race simulation as well as during the maximum ramp test. While HR analysis revealed a similar strain to both cohorts in both tests, the superiority can be explainable by higher VO2 and power output. To further push the performance of SKIMO athletes, the development of named factors like power output at maximum and ventilatory threshold 2 seems crucial.


Assuntos
Desempenho Atlético/fisiologia , Comportamento Competitivo/fisiologia , Montanhismo/fisiologia , Esqui/fisiologia , Adulto , Frequência Cardíaca , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio , Aptidão Física , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...