RESUMO
Though mule deer (Odocoileus hemionus) persist in robust populations throughout most of their North American distribution, habitat loss, unregulated hunting, and other factors have reduced their historical range in México. Two of the 6 putative subspecies inhabiting México's deserts and Baja California peninsula are of conservation concern, occupying islands in the Pacific Ocean (Odocoileus hemionus cerrosensis on Cedros Island: endangered) and Sea of Cortés (Odocoileus hemionus sheldoni on Tiburón Island: threatened). Focusing on the desert southwest (n = 448), we sampled Tiburón (n = 22) and Cedros (n = 15) Island mule deer using contemporary samples and natural history museum specimens to complete a phylogeographic evaluation of the species complex, and assess the phylogeography of these insular subspecies. Both insular subspecies formed endemic haplotype lineages, consistent with island biogeographic theory. Bayesian skyline plots were consistent with Holocene demographic expansion. Cedros Island deer were genetically most similar to adjacent mainland Baja California deer, but exhibited a suite of unique haplotypes and reduced genetic variation. Tiburón Island deer haplotypes unexpectedly nested within a mainland lineage found in distant New Mexico, rather than the adjacent mainland Sonoran lineage. Such findings suggest the importance of postglacial climate fluctuations and biotic community turnover in the phylogeographic history of mule deer in the desert southwest. Our genetic data corroborates cultural, archaeological, and phenotypic evidence supporting Cedros and Tiburón deer endemicity and subspecies status. Reduced genetic variation, divergence from mainland populations, and demographic trends on both islands indicate that conservation, monitoring, and management are critical to ensure persistence of these endemic insular subspecies.