Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Pathology ; 55(3): 329-334, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36428107

RESUMO

Central giant cell granulomas (CGCG) are rare intraosseous osteolytic lesions of uncertain aetiology. Despite the benign nature of this neoplasia, the lesions can rapidly grow and become large, painful, invasive, and destructive. The identification of molecular drivers could help in the selection of targeted therapies for specific cases. TRPV4, KRAS and FGFR1 mutations have been associated with these lesions but no correlation between the mutations and patient features was observed so far. In this study, we analysed 17 CGCG cases of an Italian cohort and identified an interesting and significant (p=0.0021) correlation between FGFR1 mutations and age. In detail, FGFR1 mutations were observed frequently and exclusively in CGCG from young (<18 years old) patients (4/5 lesions, 80%). Furthermore, the combination between ours and previously published data confirmed a significant difference in the frequency of FGFR1 mutations in CGCG from patients younger than 18 years at the time of diagnosis (9/23 lesions, 39%) when compared to older patients (1/31 lesions, 0.03%; p=0.0011), thus corroborating our observation in a cohort of 54 patients. FGFR1 variants in young CGCG patients could favour fast lesion growth, implying that they seek medical attention earlier. Our observation might help prioritise candidates for FGFR1 testing, thus opening treatment options with FGFR inhibitors.


Assuntos
Granuloma de Células Gigantes , Humanos , Adolescente , Granuloma de Células Gigantes/genética , Granuloma de Células Gigantes/diagnóstico , Granuloma de Células Gigantes/patologia , Taxa de Mutação , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
2.
Sci Rep ; 12(1): 1102, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058523

RESUMO

Brain metastases comprise 40% of all metastatic tumours and breast tumours are among the tumours that most commonly metastasise to the brain, the role that epigenetic gene dysregulation plays in this process is not well understood. We carried out 450 K methylation array analysis to investigate epigenetically dysregulated genes in breast to brain metastases (BBM) compared to normal breast tissues (BN) and primary breast tumours (BP). For this, we referenced 450 K methylation data for BBM tumours prepared in our laboratory with BN and BP from The Cancer Genome Atlas. Experimental validation on our initially identified genes, in an independent cohort of BP and in BBM and their originating primary breast tumours using Combined Bisulphite and Restriction Analysis (CoBRA) and Methylation Specific PCR identified three genes (RP11-713P17.4, MIR124-2, NUS1P3) that are hypermethylated and three genes (MIR3193, CTD-2023M8.1 and MTND6P4) that are hypomethylated in breast to brain metastases. In addition, methylation differences in candidate genes between BBM tumours and originating primary tumours shows dysregulation of DNA methylation occurs either at an early stage of tumour evolution (in the primary tumour) or at a later evolutionary stage (where the epigenetic change is only observed in the brain metastasis). Epigentic changes identified could also be found when analysing tumour free circulating DNA (tfcDNA) in patient's serum taken during BBM biopsies. Epigenetic dysregulation of RP11-713P17.4, MIR3193, MTND6P4 are early events suggesting a potential use for these genes as prognostic markers.


Assuntos
Neoplasias Encefálicas/genética , Epigênese Genética/genética , RNA não Traduzido/genética , Biomarcadores Tumorais/genética , Encéfalo/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Epigenômica , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs , Metástase Neoplásica/genética , Prognóstico , Regiões Promotoras Genéticas/genética , Receptores de Superfície Celular , Transcriptoma/genética
3.
Am J Surg Pathol ; 43(7): 965-974, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31021853

RESUMO

Adamantinoma and osteofibrous dysplasia (OFD)-like adamantinoma are rare primary bone tumors that are predominantly confined to the tibia. These 2 entities show similarities in location, histology, and radiologic appearance; however, adamantinoma is malignant and therefore differentiating between these bone tumors is essential for optimal patient care. To elucidate their genomic and transcriptomic alteration profiles and expand their etiological mechanisms, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) were conducted on adamantinoma and OFD-like adamantinoma tumors. Copy number variation analysis using WES data revealed distinct chromosomal alteration profiles for adamantinoma tumors compared with OFD-like adamantinomas, allowing molecular differentiation between the 2 tumor subtypes. Combining WES and copy number variation analyses, the chromatin remodelling-related gene KMT2D was recurrently altered in 3/8 adamantinoma tumors (38%), highlighting the potential involvement of deregulated chromatin structure and integrity in adamantinoma tumorigenesis. RNA-Seq analysis revealed a novel somatic gene fusion (EPHB4-MARCH10) in an adamantinoma, the gene fusion was fully characterized. Hierarchical clustering analysis of RNA-Seq data distinctly clustered adamantinoma tumors from OFD-like adamantinomas, allowing to molecularly distinguish between the 2 entities. David Gene Ontology analysis of differentially expressed genes identified distinct altered pathways in adamantinoma and OFD-like adamantinoma tumors, highlighting the different histopathologic characteristics of these bone tumor subtypes. Moreover, RNA-Seq expression profiling analysis identified elevated expression of DLK1 gene in adamantinomas, serving as a potential molecular biomarker. The present study revealed novel genetic and transcriptomic insights for adamantinoma and OFD-like adamantinoma tumors, allowing to differentiate genetically and transcriptomically between the 2 lesions and identifying a potential diagnostic marker for adamantinomas.


Assuntos
Adamantinoma/genética , Biomarcadores Tumorais/genética , Doenças do Desenvolvimento Ósseo/genética , Neoplasias Ósseas/genética , Adamantinoma/patologia , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/patologia , Neoplasias Ósseas/patologia , Criança , Análise por Conglomerados , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Feminino , Dosagem de Genes , Fusão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Prognóstico , RNA-Seq , Receptor EphB4/genética , Estudos Retrospectivos , Transcriptoma , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma , Adulto Jovem
4.
J Pathol ; 247(2): 166-176, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30281149

RESUMO

Undifferentiated pleomorphic sarcoma of bone (UPSb) is a rare primary bone sarcoma that lacks a specific line of differentiation. There is very little information about the genetic alterations leading to tumourigenesis or malignant transformation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, can be challenging due to overlapping features. To explore the genomic and transcriptomic landscape of UPSb tumours, whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) were performed on UPSb tumours. All tumours lacked hotspot mutations in IDH1/2 132 or 172 codons, thereby excluding the diagnosis of dedifferentiated chondrosarcoma. Recurrent somatic mutations in TP53 were identified in four of 14 samples (29%). Moreover, recurrent mutations in histone chromatin remodelling genes, including H3F3A, ATRX and DOT1L, were identified in five of 14 samples (36%), highlighting the potential role of deregulated chromatin remodelling pathways in UPSb tumourigenesis. The majority of recurrent mutations in chromatin remodelling genes identified here are reported in COSMIC, including the H3F3A G34 and K36 hotspot residues. Copy number alteration analysis identified gains and losses in genes that have been previously altered in UPSb or UPS of soft tissue. Eight somatic gene fusions were identified by RNA-Seq, two of which, CLTC-VMP1 and FARP1-STK24, were reported previously in multiple cancers. Five gene fusions were genomically characterised. Hierarchical clustering analysis, using RNA-Seq data, distinctly clustered UPSb tumours from osteosarcoma and other sarcomas, thus molecularly distinguishing UPSb from other sarcomas. RNA-Seq expression profiling analysis and quantitative reverse transcription-polymerase chain reaction showed an elevated expression in FGF23, which can be a potential molecular biomarker for UPSb. To our knowledge, this study represents the first comprehensive WES and RNA-Seq analysis of UPSb tumours revealing novel protein-coding recurrent gene mutations, gene fusions and identifying a potential UPSb molecular biomarker, thereby broadening the understanding of the pathogenic mechanisms and highlighting the possibility of developing novel targeted therapeutics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Diferenciação Celular/genética , Sequenciamento do Exoma , Perfilação da Expressão Gênica , Sarcoma/genética , Análise de Sequência de RNA , Transcriptoma , Neoplasias Ósseas/patologia , Bases de Dados Factuais , Diagnóstico Diferencial , Fator de Crescimento de Fibroblastos 23 , Fusão Gênica , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo , Valor Preditivo dos Testes , Estudos Retrospectivos , Sarcoma/patologia
5.
J Pathol ; 245(2): 186-196, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29533464

RESUMO

In recent years, undifferentiated small round cell sarcomas (USRCSs) have been divided into a variety of new, rare, sarcoma subtypes, including the group of Ewing-like sarcomas, which have the morphological appearance of Ewing sarcomas, but carry CIC-DUX4, BCOR-CCNB3 and other gene fusions different from the classic EWSR1-ETS gene fusion. Using high-throughput RNA-sequencing (RNA-seq) analyses, we identified a novel recurrent gene fusion, CRTC1-SS18, in two cases of USRCS that lacked any known translocation. RNA-seq results were confirmed by reverse transcription polymerase chain reaction, long-range polymerase chain reaction, and fluorescence in situ hybridization. In vitro, we showed that the cells expressing the gene fusion were morphologically distinct and had enhanced oncogenic potential as compared with control cells. Expression profile comparisons with tumours of other sarcoma subtypes demonstrated that both cases clustered close to EWSR1-CREB1-positive tumours. Moreover, these analyses indicated enhanced NTRK1 expression in CRTC1-SS18-positive tumours. We conclude that the novel gene fusion identified in this study adds a new subtype to the USRCSs with unique gene signatures, and may be of therapeutic relevance. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Diferenciação Celular , Fusão Gênica , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Sarcoma de Células Pequenas/genética , Neoplasias de Tecidos Moles/genética , Fatores de Transcrição/genética , Adulto , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Invasividade Neoplásica , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Sarcoma de Células Pequenas/metabolismo , Sarcoma de Células Pequenas/patologia , Sarcoma de Células Pequenas/terapia , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/terapia , Fatores de Transcrição/metabolismo
7.
Hum Pathol ; 65: 239-246, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28552826

RESUMO

Histologically, it is nearly impossible to distinguish the dedifferentiated component of dedifferentiated chondrosarcoma from undifferentiated pleomorphic sarcoma (UPS) of bone when the low-grade cartilaginous component is absent. Previous studies have revealed that isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are present in a significant number of cartilaginous tumors including most conventional chondrosarcomas and dedifferentiated chondrosarcomas. These mutations have not been studied in UPSs of bone. We sought to investigate whether an IDH1 or IDH2 mutation signature could be used as a clinically diagnostic marker for the distinction of dedifferentiated component of chondrosarcoma from UPS of bone. Sixty-eight bone tumor cases, including 31 conventional chondrosarcomas, 23 dedifferentiated chondrosarcomas, and 14 UPSs of bone, were collected for IDH1/2 mutation analysis either using the Qiagen IDH1/2 RGQ PCR Kit or using whole-exome sequencing. IDH1/2 mutations were detected in 87% (20/23) of dedifferentiated chondrosarcomas and 30% (6/20) of conventional chondrosarcomas. No mutations were detected in the IDH1/2 codon 132 or codon 172 among 14 UPSs of bone. Identification of IDH1 or IDH2 mutations supports the diagnosis of dedifferentiated chondrosarcoma rather than UPS of bone while also providing some insight into the pathogenesis of these 2 lesions.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Diferenciação Celular , Condrossarcoma/genética , Análise Mutacional de DNA , Isocitrato Desidrogenase/genética , Mutação , Osteossarcoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Condrossarcoma/enzimologia , Condrossarcoma/patologia , Diagnóstico Diferencial , Inglaterra , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Fenótipo , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Kit de Reagentes para Diagnóstico , Estados Unidos
8.
Genes Chromosomes Cancer ; 56(6): 501-510, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28233365

RESUMO

CIC rearrangements have been reported in two-thirds of EWSR1-negative small blue round cell tumors (SBRCTs). However, a number of SBRCTs remain unclassified despite exhaustive analysis. Fourteen SBRCTs lacking driver genetic events by RNA sequencing (RNAseq) analysis were collected. Unsupervised hierarchical clustering was performed using samples from our RNAseq database, including 13 SBRCTs with non-CIC genetic abnormalities and 2 CIC-rearranged angiosarcomas among others. Remarkably, all 14 study cases showed high mRNA levels of ETV1/4/5, and by unsupervised clustering most grouped into a distinct cluster, separate from other tumors. Based on these results indicating a close relationship with CIC-rearranged tumors, we manually inspected CIC reads in RNAseq data. FISH for CIC and DUX4 abnormalities and immunohistochemical stains for ETV4 were also performed. In the control group, only 2 CIC-rearranged angiosarcomas had high ETV1/4/5 expression. Upon manual inspection of CIC traces, 7 of 14 cases showed CIC-DUX4 fusion reads, 2 cases had DUX4-CIC reads, while the remaining 5 were negative. FISH showed CIC break-apart in 7 cases, including 5 cases lacking CIC-DUX4 or DUX4-CIC fusion reads on RNAseq manual inspection. However, no CIC abnormalities were detected by FISH in 6 cases with CIC-DUX4 or DUX4-CIC reads. ETV4 immunoreactivity was positive in 7 of 11 cases. Our results highlight the underperformance of FISH and RNAseq methods in diagnosing SBRCTs with CIC gene abnormalities. The downstream ETV1/4/5 transcriptional up-regulation appears highly sensitive and specific and can be used as a reliable molecular signature and diagnostic method for CIC fusion positive SBRCTs.


Assuntos
Algoritmos , Proteínas de Ligação a DNA/genética , Rearranjo Gênico , Hibridização in Situ Fluorescente , Proteínas Repressoras/genética , Sarcoma de Ewing/diagnóstico , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sarcoma de Ewing/genética , Adulto Jovem
9.
Nat Rev Nephrol ; 13(1): 47-60, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27890923

RESUMO

The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers.


Assuntos
Epigênese Genética , Neoplasias Renais/genética , Metilação de DNA , Histonas , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/terapia , Mutação , Transdução de Sinais
10.
Clin Epigenetics ; 7: 57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052355

RESUMO

BACKGROUND: Tumour metastasis to the brain is a common and deadly development in certain cancers; 18-30 % of breast tumours metastasise to the brain. The contribution that gene silencing through epigenetic mechanisms plays in these metastatic tumours is not well understood. RESULTS: We have carried out a bioinformatic screen of genome-wide breast tumour methylation data available at The Cancer Genome Atlas (TCGA) and a broad literature review to identify candidate genes that may contribute to breast to brain metastasis (BBM). This analysis identified 82 candidates. We investigated the methylation status of these genes using Combined Bisulfite and Restriction Analysis (CoBRA) and identified 21 genes frequently methylated in BBM. We have identified three genes, GALNT9, CCDC8 and BNC1, that were frequently methylated (55, 73 and 71 %, respectively) and silenced in BBM and infrequently methylated in primary breast tumours. CCDC8 was commonly methylated in brain metastases and their associated primary tumours whereas GALNT9 and BNC1 were methylated and silenced only in brain metastases, but not in the associated primary breast tumours from individual patients. This suggests differing roles for these genes in the evolution of metastatic tumours; CCDC8 methylation occurs at an early stage of metastatic evolution whereas methylation of GANLT9 and BNC1 occurs at a later stage of tumour evolution. Knockdown of these genes by RNAi resulted in a significant increase in the migratory and invasive potential of breast cancer cell lines. CONCLUSIONS: These findings indicate that GALNT9 (an initiator of O-glycosylation), CCDC8 (a regulator of microtubule dynamics) and BNC1 (a transcription factor with a broad range of targets) may play a role in the progression of primary breast tumours to brain metastases. These genes may be useful as prognostic markers and their products may provide novel therapeutic targets.

11.
Nat Genet ; 47(6): 607-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938942

RESUMO

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Assuntos
Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Receptores de Glucocorticoides/metabolismo , Adolescente , Antineoplásicos Hormonais/farmacologia , Sequência de Bases , Criança , Pré-Escolar , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Lactente , Recém-Nascido , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Recidiva Local de Neoplasia/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prednisolona/farmacologia , Proteólise , Transcrição Gênica , Células Tumorais Cultivadas , Regulação para Cima
12.
Int J Endocrinol ; 2015: 138573, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883647

RESUMO

At least 12 genes (FH, HIF2A, MAX, NF1, RET, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, and VHL) have been implicated in inherited predisposition to phaeochromocytoma (PCC), paraganglioma (PGL), or head and neck paraganglioma (HNPGL) and a germline mutation may be detected in more than 30% of cases. Knowledge of somatic mutations contributing to PCC/PGL/HNPGL pathogenesis has received less attention though mutations in HRAS, HIF2A, NF1, RET, and VHL have been reported. To further elucidate the role of somatic mutation in PCC/PGL/HNPGL tumourigenesis, we employed a next generation sequencing strategy to analyse "mutation hotspots" in 50 human cancer genes. Mutations were identified for HRAS (c.37G>C; p.G13R and c.182A>G; p.Q61R) in 7.1% (6/85); for BRAF (c.1799T>A; p.V600E) in 1.2% (1/85) of tumours; and for TP53 (c.1010G>A; p.R337H) in 2.35% (2/85) of cases. Twenty-one tumours harboured mutations in inherited PCC/PGL/HNPGL genes and no HRAS, BRAF, or TP53 mutations occurred in this group. Combining our data with previous reports of HRAS mutations in PCC/PGL we find that the mean frequency of HRAS/BRAF mutations in sporadic PCC/PGL is 8.9% (24/269) and in PCC/PGL with an inherited gene mutation 0% (0/148) suggesting that HRAS/BRAF mutations and inherited PCC/PGL genes mutations might be mutually exclusive. We report the first evidence for BRAF mutations in the pathogenesis of PCC/PGL/HNPGL.

13.
Cancer Discov ; 5(7): 723-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25873077

RESUMO

UNLABELLED: Familial renal cell carcinoma (RCC) is genetically heterogeneous and may be caused by mutations in multiple genes, including VHL, MET, SDHB, FH, FLCN, PTEN, and BAP1. However, most individuals with inherited RCC do not have a detectable germline mutation. To identify novel inherited RCC genes, we undertook exome resequencing studies in a familial RCC kindred and identified a CDKN2B nonsense mutation that segregated with familial RCC status. Targeted resequencing of CDKN2B in individuals (n = 82) with features of inherited RCC then revealed three candidate CDKN2B missense mutations (p.Pro40Thr, p.Ala23Glu, and p.Asp86Asn). In silico analysis of the three-dimensional structures indicated that each missense substitution was likely pathogenic through reduced stability of the mutant or reduced affinity for cyclin-dependent kinases 4 and 6, and in vitro studies demonstrated that each of the mutations impaired CDKN2B-induced suppression of proliferation in an RCC cell line. These findings identify germline CDKN2B mutations as a novel cause of familial RCC. SIGNIFICANCE: Germline loss-of-function CDKN2B mutations were identified in a subset of patients with features of inherited RCC. Detection of germline CDKN2B mutations will have an impact on familial cancer screening and might prove to influence the management of disseminated disease.


Assuntos
Carcinoma de Células Renais/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Mutação em Linhagem Germinativa , Neoplasias Renais/genética , Análise de Sequência de DNA/métodos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Renais/química , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem
14.
Epigenetics ; 9(11): 1496-503, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25482183

RESUMO

Brain metastasis is a major contributor to cancer mortality, yet, the genetic changes underlying the development of this capacity remain poorly understood. RASSF proteins are a family of tumor suppressors that often suffer epigenetic inactivation during tumorigenesis. However, their epigenetic status in brain metastases has not been well characterized. We have examined the promoter methylation of the classical RASSF members (RASSF1A-RASSF6) in a panel of metastatic brain tumor samples. RASSF1A and RASSF2 have been shown to undergo promoter methylation at high frequency in primary lung and breast tumors and in brain metastases. Other members exhibited little or no methylation in these tumors. In examining melanoma metastases, however, we found that RASSF6 exhibits the highest frequency of inactivation in melanoma and in melanoma brain metastases. Most melanomas are driven by an activating mutation in B-Raf. Introduction of RASSF6 into a B-Raf(V600E)-containing metastatic melanoma cell line inhibited its ability to invade through collagen and suppressed MAPK pathway activation and AKT. RASSF6 also appears to increase the association of mutant B-Raf and MST1, providing a potential mechanism by which RASSF6 is able to suppress MAPK activation. Thus, we have identified a novel potential role for RASSF6 in melanoma development. Promoter methylation leading to reduced expression of RASSF6 may play an important role in melanoma development and may contribute to brain metastases.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Melanoma/genética , Melanoma/patologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Reguladoras de Apoptose , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/genética
15.
BMC Cancer ; 14: 506, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25012071

RESUMO

BACKGROUND: Grade IV glioblastomas exist in two forms, primary (de novo) glioblastomas (pGBM) that arise without precursor lesions, and the less common secondary glioblastomas (sGBM) which develop from earlier lower grade lesions. Genetic heterogeneity between pGBM and sGBM has been documented as have differences in the methylation of individual genes. A hypermethylator phenotype in grade IV GBMs is now well documented however there has been little comparison between global methylation profiles of pGBM and sGBM samples or of methylation profiles between paired early and late sGBM samples. METHODS: We performed genome-wide methylation profiling of 20 matched pairs of early and late gliomas using the Infinium HumanMethylation450 BeadChips to assess methylation at >485,000 cytosine positions within the human genome. RESULTS: Clustering of our data demonstrated a frequent hypermethylator phenotype that associated with IDH1 mutation in sGBM tumors. In 80% of cases, the hypermethylator status was retained in both the early and late tumor of the same patient, indicating limited alterations to genome-wide methylation during progression and that the CIMP phenotype is an early event. Analysis of hypermethylated loci identified 218 genes frequently methylated across grade II, III and IV tumors indicating a possible role in sGBM tumorigenesis. Comparison of our sGBM data with TCGA pGBM data indicate that IDH1 mutated GBM samples have very similar hypermethylator phenotypes, however the methylation profiles of the majority of samples with WT IDH1 that do not demonstrate a hypermethylator phenotype cluster separately from sGBM samples, indicating underlying differences in methylation profiles. We also identified 180 genes that were methylated only in sGBM. Further analysis of these genes may lead to a better understanding of the pathology of sGBM vs pGBM. CONCLUSION: This is the first study to have documented genome-wide methylation changes within paired early/late astrocytic gliomas on such a large CpG probe set, revealing a number of genes that maybe relevant to secondary gliomagenesis.


Assuntos
Metilação de DNA , Glioblastoma/genética , Glioblastoma/patologia , Ilhas de CpG , Progressão da Doença , Genoma Humano , Humanos , Isocitrato Desidrogenase/genética , Fenótipo
16.
Clin Epigenetics ; 5(1): 16, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24034811

RESUMO

BACKGROUND: Despite therapeutic advances in targeted therapy, metastatic renal cell carcinoma (RCC) remains incurable for the vast majority of patients. Key molecular events in the pathogenesis of RCC include inactivation of the VHL tumour suppressor gene (TSG), inactivation of chromosome 3p TSGs implicated in chromatin modification and remodelling and de novo tumour-specific promoter methylation of renal TSGs. In the light of these observations it can be proposed that, as in some haematological malignancies, demethylating agents such as azacitidine might be beneficial for the treatment of advanced RCC. RESULTS: Here we report that the treatment of RCC cell lines with azacitidine suppressed cell proliferation in all 15 lines tested. A marked response to azacitidine therapy (>50% reduction in colony formation assay) was detected in the three cell lines with VHL promoter methylation but some RCC cell lines without VHL TSG methylation also demonstrated a similar response suggesting that multiple methylated TSGs might determine the response to demethylating therapies. To identify novel candidate methylated TSGs implicated in RCC we undertook a combined analysis of copy number and CpG methylation array data. Candidate novel epigenetically inactivated TSGs were further prioritised by expression analysis of RCC cell lines pre and post-azacitidine therapy and comparative expression analysis of tumour/normal pairs. Thus, with subsequent investigation two candidate genes were found to be methylated in more than 25% of our series and in the TCGA methylation dataset for 199 RCC samples: RGS7 (25.6% and 35.2% of tumours respectively) and NEFM in (25.6% and 30.2%). In addition three candidate genes were methylated in >10% of both datasets (TMEM74 (15.4% and 14.6%), GCM2 (41.0% and 14.6%) and AEBP1 (30.8% and 13.1%)). Methylation of GCM2 (P = 0.0324), NEFM (P = 0.0024) and RGS7 (P = 0.0067) was associated with prognosis. CONCLUSIONS: These findings provide preclinical evidence that treatment with demethylating agents such as azacitidine might be useful for the treatment of advanced RCC and further insights into the role of epigenetic changes in the pathogenesis of RCC.

17.
Epigenetics ; 8(11): 1198-204, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005033

RESUMO

Using a candidate gene approach we recently identified frequent methylation of the RASSF2 gene associated with poor overall survival in Ewing sarcoma (ES). To identify effective biomarkers in ES on a genome-wide scale, we used a functionally proven epigenetic approach, in which gene expression was induced in ES cell lines by treatment with a demethylating agent followed by hybridization onto high density gene expression microarrays. After following a strict selection criterion, 34 genes were selected for expression and methylation analysis in ES cell lines and primary ES. Eight genes (CTHRC1, DNAJA4, ECHDC2, NEFH, NPTX2, PHF11, RARRES2, TSGA14) showed methylation frequencies of>20% in ES tumors (range 24-71%), these genes were expressed in human bone marrow derived mesenchymal stem cells (hBMSC) and hypermethylation was associated with transcriptional silencing. Methylation of NPTX2 or PHF11 was associated with poorer prognosis in ES. In addition, six of the above genes also showed methylation frequency of>20% (range 36-50%) in osteosarcomas. Identification of these genes may provide insights into bone cancer tumorigenesis and development of epigenetic biomarkers for prognosis and detection of these rare tumor types.


Assuntos
Neoplasias Ósseas/genética , Metilação de DNA , Epigênese Genética , Sarcoma de Ewing/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/mortalidade , Taxa de Sobrevida , Transcriptoma
18.
Epigenetics ; 8(9): 893-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23887284

RESUMO

Ras-association domain family of genes consist of 10 members (RASSF1-RASSF10), all containing a Ras-association (RA) domain in either the C- or the N-terminus. Several members of this gene family are frequently methylated in common sporadic cancers; however, the role of the RASSF gene family in rare types of cancers, such as bone cancer, has remained largely uninvestigated. In this report, we investigated the methylation status of RASSF1A and RASSF2 in Ewing sarcoma (ES). Quantitative real-time methylation analysis (MethyLight) demonstrated that both genes were frequently methylated in Ewing sarcoma tumors (52.5% and 42.5%, respectively) as well as in ES cell lines and gene expression was upregulated in methylated cell lines after treatment with 5-aza-2'-deoxcytidine. Overexpression of either RASSF1A or RASSF2 reduced colony formation ability of ES cells. RASSF2 methylation correlated with poor overall survival (p = 0.028) and this association was more pronounced in patients under the age of 18 y (p = 0.002). These results suggest that both RASSF1A and RASSF2 are novel epigenetically inactivated tumor suppressor genes in Ewing sarcoma and RASSF2 methylation may have prognostic implications for ES patients.


Assuntos
Metilação de DNA , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Decitabina , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 8(6): e65868, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776562

RESUMO

BACKGROUND: Vestibular schwannomas are benign tumors that arise from Schwann cells in the VIII cranial pair and usually present NF2 gene mutations and/or loss of heterozygosity on chromosome 22q. Deregulation has also been found in several genes, such as ERBB2 and NRG1. MicroRNAs are non-coding RNAs approximately 21 to 23 nucleotides in length that regulate mRNAs, usually by degradation at the post-transcriptional level. METHODS: We used microarray technology to test the deregulation of miRNAs and other non-coding RNAs present in GeneChip miRNA 1.0 (Affymetrix) over 16 vestibular schwannomas and 3 control-nerves, validating 10 of them by qRT-PCR. FINDINGS: Our results showed the deregulation of 174 miRNAs, including miR-10b, miR-206, miR-183 and miR-204, and the upregulation of miR-431, miR-221, miR-21 and miR-720, among others. The results also showed an aberrant expression of other non-coding RNAs. We also found a general upregulation of the miRNA cluster located at chromosome 14q32. CONCLUSION: Our results suggest that several miRNAs are involved in tumor formation and/or maintenance and that global upregulation of the 14q32 chromosomal site contains miRNAs that may represent a therapeutic target for this neoplasm.


Assuntos
Cromossomos Humanos Par 14/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Neuroma Acústico/genética , Adulto , Alelos , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , RNA não Traduzido/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Epigenetics ; 8(3): 252-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23428843

RESUMO

Renal cell carcinoma (RCC) accounts for around 3% of cancers in the UK, and both incidence and mortality are increasing with the aging population. RCC can be divided into several subtypes: conventional RCC (the most common, comprising 75% of all cases), papillary RCC (15%) and chromophobe RCC (5%). Renal oncocytoma is a benign tumor and accounts for 5% of RCC. Cancer and epigenetics are closely associated, with DNA hypermethylation being widely accepted as a feature of many cancers. In this study the DNA methylation profiles of chromophobe RCC and renal oncocytomas were investigated by utilizing the Infinium HumanMethylation450 BeadChips. Cancer-specific hypermethylation was identified in 9.4% and 5.2% of loci in chromophobe RCC and renal oncocytoma samples, respectively, while the majority of the genome was hypomethylated. Thirty (hypermethylated) and 41 (hypomethylated) genes were identified as differentially methylated between chromophobe RCC and renal oncocytomas (p < 0.05). Pathway analysis identified some of the differentially hypermethylated genes to be involved in Wnt (EN2), MAPK (CACNG7) and TGFß (AMH) signaling, Hippo pathway (NPHP4), and cell death and apoptosis (SPG20, NKX6-2, PAX3 and BAG2). In addition, we analyzed ccRCC and papillary RCC data available from The Cancer Genome Atlas portal to identify differentially methylated loci in chromophobe RCC and renal oncocytoma in relation to the other histological subtypes, providing insight into the pathology of RCC subtypes and classification of renal tumors.


Assuntos
Adenoma Oxífilo/genética , Carcinoma de Células Renais/genética , Metilação de DNA , DNA de Neoplasias/metabolismo , Neoplasias Renais/genética , Adenoma Oxífilo/classificação , Adenoma Oxífilo/metabolismo , Apoptose/genética , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/metabolismo , Epigênese Genética , Genoma Humano , Humanos , Neoplasias Renais/classificação , Neoplasias Renais/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...