Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38758128

RESUMO

Mouse models of congenital aortic valve malformations are useful for studying disease pathobiology, but most models have incomplete penetrance (e.g., ~2 to 77% prevalence of bicuspid aortic valves (BAVs) across multiple models). For longitudinal studies of pathologies associated with BAVs and other congenital valve malformations, which manifest over months in mice, it is operationally inefficient, economically burdensome, and ethically challenging to enroll large numbers of mice in studies without first identifying those with valvular abnormalities. To address this need, we established and validated a novel in vivo high frequency (30 MHz) ultrasound imaging protocol capable of detecting aortic valvular malformations in juvenile mice. Fifty natriuretic peptide receptor 2 heterozygous mice on a low density lipoprotein receptor deficient background (Npr2+/-;Ldlr-/-; 32 male, 18 female) were imaged at 4- and 8-weeks of age. Fourteen percent of the Npr2+/-;Ldlr-/- mice exhibited features associated with aortic valve malformations, including: i) abnormal trans-aortic flow patterns on color Doppler (recirculation and regurgitation); ii) peak systolic flow velocities distal to the aortic valves reaching or surpassing ~1250 mm/s by pulsed wave Doppler; and iii) putative fusion of cusps along commissures and abnormal movement elucidated by 2D imaging with ultra-high temporal resolution. Valves with these features were confirmed by ex vivo gross anatomy and histological visualization to have thickened cusps, partial fusions, or Sievers type 0 bicuspid valves. This ultrasound imaging protocol will enable efficient, cost-effective and humane implementation of studies of congenital aortic valvular abnormalities and associated pathologies in a wide range of mouse models.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38606850

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma that contributes to aggressive tumor biology and therapeutic resistance. Current in vitro PDAC models lack sufficient optical and physical access for fibrous network visualization, in situ mechanical stiffness measurement, and metabolomic profiling. Here, we describe an openable multilayer microfluidic PDAC-on-a-chip platform that consists of pancreatic tumor cells (PTCs) and pancreatic stellate cells (PSCs) embedded in a 3D collagen matrix that mimics the stroma. Our system allows fibrous network visualization via reflected light confocal (RLC) microscopy, in situ mechanical stiffness testing using atomic force microscopy (AFM), and compartmentalized hydrogel extraction for PSC metabolomic profiling via mass spectrometry (MS) analysis. In comparing cocultures of gel-embedded PSCs and PTCs with PSC-only monocultures, RLC microscopy identified a significant decrease in pore size and corresponding increase in fiber density. In situ AFM indicated significant increases in stiffness, and hallmark characteristics of PSC activation were observed using fluorescence microscopy. PSCs in coculture also demonstrated localized fiber alignment and densification as well as increased collagen production. Finally, an untargeted MS study putatively identified metabolic contributions consistent with in vivo PDAC studies. Taken together, this platform can potentially advance our understanding of tumor-stromal interactions toward the discovery of novel therapies.

3.
ACS Nano ; 18(1): 314-327, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147684

RESUMO

Cell-based models that mimic in vivo heart physiology are poised to make significant advances in cardiac disease modeling and drug discovery. In these systems, cardiomyocyte (CM) contractility is an important functional metric, but current measurement methods are inaccurate and low-throughput or require complex setups. To address this need, we developed a standalone noninvasive, label-free ultrasound technique operating at 40-200 MHz to measure the contractile kinetics of cardiac models, ranging from single adult CMs to 3D microtissue constructs in standard cell culture formats. The high temporal resolution of 1000 fps resolved the beat profile of single mouse CMs paced at up to 9 Hz, revealing limitations of lower speed optical based measurements to resolve beat kinetics or characterize aberrant beats. Coupling of ultrasound with traction force microscopy enabled the measurement of the CM longitudinal modulus and facile estimation of adult mouse CM contractile forces of 2.34 ± 1.40 µN, comparable to more complex measurement techniques. Similarly, the beat rate, rhythm, and drug responses of CM spheroid and microtissue models were measured, including in configurations without optical access. In conclusion, ultrasound can be used for the rapid characterization of CM contractile function in a wide range of commonly studied configurations ranging from single cells to 3D tissue constructs using standard well plates and custom microdevices, with applications in cardiac drug discovery and cardiotoxicity evaluation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Miócitos Cardíacos , Células Cultivadas , Descoberta de Drogas , Dispositivos Lab-On-A-Chip
4.
J Voice ; 37(6): 829-839, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353684

RESUMO

OBJECTIVES: The objective of this study was to evaluate the efficacy of immediate injection treatments of dexamethasone, hyaluronic acid (HA)/gelatin (Ge) hydrogel and glycol-chitosan solution on the phonatory function of rabbit larynges at 42 days after surgical injury of the vocal folds, piloting a novel ex vivo phonatory functional analysis protocol. METHODS: A modified microflap procedure was performed on the left vocal fold of 12 rabbits to induce an acute injury. Animals were randomized into one of four treatment groups with 0.1 mL injections of dexamethasone, HA/Ge hydrogel, glycol-chitosan or saline as control. The left mid vocal fold lamina propria was injected immediately following injury. The right vocal fold served as an uninjured control. Larynges were harvested at Day 42 after injection, then were subjected to airflow-bench evaluation. Acoustic, aerodynamic and laryngeal high-speed videoendoscopy (HSV) analyses were performed. HSV segments of the vibrating vocal folds were rated by three expert laryngologists. Six parameters related to vocal fold vibratory characteristics were evaluated on a Likert scale. RESULTS: The fundamental frequency, one possible surrogate of vocal fold stiffness and scarring, was lower in the dexamethasone and HA/Ge hydrogel treatment groups compared to that of the saline control (411.52±11.63 Hz). The lowest fundamental frequency value was observed in the dexamethasone group (348.79±14.99 Hz). Expert visual ratings of the HSV segments indicated an overall positive outcome in the dexamethasone treatment group, though the impacts were below statistical significance. CONCLUSION: Dexamethasone injections might be used as an adjunctive option for iatrogenic vocal fold scarring. An increased sample size, histological correlate, and experimental method improvements will be needed to confirm this finding. Results suggested a promising use of HSV and acoustic analysis techniques to identify and monitor post-surgical vocal fold repair and scarring, providing a useful tool for future studies of vocal fold scar treatments.


Assuntos
Cicatriz , Prega Vocal , Animais , Coelhos , Cicatrização , Ácido Hialurônico , Hidrogéis/farmacologia , Dexametasona
5.
Circulation ; 145(18): 1412-1426, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089805

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved through culture on polydimethylsiloxane (PDMS)-lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations. METHODS: We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic substrates. All hPSC-CMs were generated from a transgenic hPSC line that stably expressed a voltage-sensitive fluorescent reporter to facilitate in vitro and in vivo electrophysiological studies, and cardiomyocyte populations were also analyzed in vitro by immunocytochemistry, ultrastructure and fluorescent calcium imaging, and bulk and single-cell transcriptomics. We next compared outcomes after the transplantation of these populations into a guinea pig model of myocardial infarction using end points including histology, optical mapping of graft- and host-derived action potentials, echocardiography, and telemetric electrocardiographic monitoring. RESULTS: We demonstrated the economic generation of >1×108 mature hPSC-CMs per PDMS-lined roller bottle. Compared with their counterparts generated on tissue culture plastic substrates, PDMS-matured hPSC-CMs exhibited increased cardiac gene expression and more mature structural and functional properties in vitro. More important, intracardiac grafts formed with PDMS-matured myocytes showed greatly enhanced structure and alignment, better host-graft electromechanical integration, less proarrhythmic behavior, and greater beneficial effects on contractile function. CONCLUSIONS: We describe practical methods for the scaled generation of mature hPSC-CMs and provide the first evidence that the transplantation of more mature cardiomyocytes yields better outcomes in vivo.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Linhagem Celular , Cobaias , Humanos , Miócitos Cardíacos/metabolismo , Plásticos/metabolismo , Células-Tronco Pluripotentes/metabolismo
6.
Tissue Eng Part C Methods ; 27(1): 35-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349127

RESUMO

Many children born with congenital heart disease need a heart valve repair or replacement. Currently available repair materials and valve replacements are incapable of growth, repair, and adaptation, rendering them inadequate for growing children. Heart valve tissue engineering (HVTE) aims to develop living replacement valves that can meet these needs. Among numerous cell sources for in vitro HVTE, umbilical cord perivascular cells (UCPVCs) are particularly attractive because they are autologous, readily available, and have excellent regenerative capacity. As an essential step toward preclinical testing of heart valves engineered from UCPVCs, the goal of this study was to establish methods to isolate, expand, and promote extracellular matrix (ECM) synthesis by UCPVCs from pigs (porcine umbilical cord perivascular cells [pUCPVCs]), as a relevant preclinical model. We determined that Dulbecco's modified Eagle's medium with 20% fetal bovine serum supported isolation and substantial expansion of pUCPVCs, whereas media designed for human mesenchymal stromal cell (MSC) expansion did not. We further demonstrated the capacity of pUCPVCs to synthesize the main ECM components of heart valves (collagen type I, elastin, and glycosaminoglycans), with maximal collagen and elastin per-cell production occurring in serum-free culture conditions using StemMACS™ MSC Expansion Media. Altogether, these results establish protocols that enable the use of pUCPVCs as a viable cell source for preclinical testing of engineered heart valves. Impact statement This study establishes methods to successfully isolate, expand, and promote the synthesis of the main extracellular matrix components of heart valves (collagen type I, elastin, and glycosaminoglycans) by porcine umbilical cord perivascular cells (pUCPVCs). These protocols enable further evaluation of pUCPVCs as an autologous, readily available, and clinically relevant cell source for preclinical testing of pediatric tissue-engineered heart valves.


Assuntos
Valvas Cardíacas , Engenharia Tecidual , Cordão Umbilical , Animais , Colágeno , Matriz Extracelular , Humanos , Suínos , Cordão Umbilical/citologia
7.
Mater Sci Eng C Mater Biol Appl ; 103: 109861, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349421

RESUMO

Porous composite hydrogels were prepared using glycol chitosan as the matrix, glyoxal as the chemical crosslinker, and carbon nanotubes (CNTs) as the fibers. Both carboxylic and hydroxylic functionalized CNTs were used. The homogeneity of CNTs dispersion was evaluated using scanning electron microscopy. Human vocal fold fibroblasts were cultured and encapsulated in the composite hydrogels with different CNT concentrations to quantify cell viability. Rheological tests were performed to determine the gelation time and the storage modulus as a function of CNT concentration. The gelation time tended to decrease for low concentrations and increase at higher concentrations, reaching a local minimum value. The storage modulus obeyed different trends depending on the functional group. The porosity of the hydrogels was found to increase by 120% when higher concentrations of carboxylic CNTs were used. A high porosity may promote cell adhesion, migration, and recruitment from the surrounding native tissue, which will be investigated in a future work aiming at applying this injectable biomaterial for vocal fold tissue regeneration.


Assuntos
Fibroblastos , Hidrogéis/química , Nanocompostos/química , Nanotubos de Carbono/química , Engenharia Tecidual , Alicerces Teciduais/química , Prega Vocal , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Reologia , Prega Vocal/citologia , Prega Vocal/metabolismo
8.
Sci Rep ; 8(1): 1047, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348423

RESUMO

While collagen type I (Col-I) is commonly used as a structural component of biomaterials, collagen type III (Col-III), another fibril forming collagen ubiquitous in many soft tissues, has not previously been used. In the present study, the novel concept of an injectable hydrogel with semi-interpenetrating polymeric networks of heterotypic collagen fibrils, with tissue-specific Col-III to Col-I ratios, in a glycol-chitosan matrix was investigated. Col-III was introduced as a component of the novel hydrogel, inspired by its co-presence with Col-I in many soft tissues, its influence on the Col-I fibrillogenesis in terms of diameter and mechanics, and its established role in regulating scar formation. The hydrogel has a nano-fibrillar porous structure, and is mechanically stable under continuous dynamic stimulation. It was found to provide a longer half-life of about 35 days than similar hyaluronic acid-based hydrogels, and to support cell implantation in terms of viability, metabolic activity, adhesion and migration. The specific case of pure Col-III fibrils in a glycol-chitosan matrix was investigated. The proposed hydrogels meet many essential requirements for soft tissue engineering applications, particularly for mechanically challenged tissues such as vocal folds and heart valves.


Assuntos
Biomimética , Tecido Conjuntivo , Hidrogéis/química , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais , Biomimética/métodos , Sobrevivência Celular , Fenômenos Químicos , Quitosana/química , Colágeno/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Teste de Materiais , Fenômenos Mecânicos , Microscopia de Força Atômica , Nanofibras/ultraestrutura
9.
Sci Rep ; 7(1): 1392, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469139

RESUMO

Tropocollagen types I and III were simultaneously fibrilized in vitro, and the differences between the geometric and mechanical properties of the heterotypic fibrils with different mixing ratios of tropocollagen III to I were investigated. Transmission electron microscopy was used to confirm the simultaneous presence of both tropocollagen types within the heterotypic fibrils. The incorporation of collagen III in I caused the fibrils to be thinner with a shorter D-banding than pure collagen I. Hertzian contact model was used to obtain the elastic moduli from atomic force microscope indentation testing using a force volume analysis. The results indicated that an increase in the percentage of tropocollagen III reduced the mechanical stiffness of the obtained fibrils. The mechanical stiffness of the collagen fibrils was found to be greater at higher loading frequencies. This observation might explain the dominance of collagen III over I in soft distensible organs such as human vocal folds.


Assuntos
Colágeno Tipo III/química , Colágeno Tipo I/química , Tropocolágeno/química , Colágeno Tipo I/ultraestrutura , Colágeno Tipo III/ultraestrutura , Módulo de Elasticidade , Elasticidade , Técnicas In Vitro , Microscopia de Força Atômica , Tropocolágeno/ultraestrutura
10.
Tissue Eng Part C Methods ; 22(9): 823-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27537192

RESUMO

The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies.


Assuntos
Reatores Biológicos , Fibroblastos/citologia , Modelos Biológicos , Engenharia Tecidual/métodos , Prega Vocal/citologia , Técnicas de Cultura de Células , Células Cultivadas , Fibroblastos/fisiologia , Humanos , Perfusão , Prega Vocal/fisiologia
11.
J Mech Behav Biomed Mater ; 39: 366-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25173237

RESUMO

The aim of the present study was to quantify the effects of the specimen shape on the accuracy of mechanical properties determined from a shape-specific model generation strategy. Digital images of five rabbit vocal folds (VFs) in their initial undeformed conditions were used to build corresponding specific solid models. The displacement field of the VFs under uniaxial tensile test was then measured over the visible portion of the surface using digital image correlation. A three-dimensional finite element model was built, using ABAQUS, for each solid model, while imposing measured boundary conditions. An inverse-problem method was used, assuming a homogeneous isotropic linear elastic constitutive model. Unknown elastic properties were identified iteratively through an error minimization technique between simulated and measured force-time data. The longitudinal elastic moduli of the five rabbit VFs were calculated and compared to values from a simple analytical method and those obtained by approximating the cross-section as elliptical. The use of shape-specific models significantly reduced the standard deviation of the Young׳s moduli of the tested specimens. However, a non-parametric statistical analysis test, i.e., the Friedman test, yielded no statistically significant differences between the shape-specific method and the elliptic cylindrical finite element model. Considering the required procedures to reconstruct the shape-specific finite element model for each tissue specimen, it might be expedient to use the simpler method when large numbers of tissue specimens are to be compared regarding their Young׳s moduli.


Assuntos
Prega Vocal/patologia , Algoritmos , Animais , Elasticidade , Desenho de Equipamento , Feminino , Análise de Elementos Finitos , Imageamento Tridimensional , Masculino , Teste de Materiais , Distribuição de Poisson , Coelhos , Reprodutibilidade dos Testes , Software , Estresse Mecânico , Temperatura , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...