Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(13): 1870-1879, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38465391

RESUMO

This paper presents a study on the application of magnetic biochars derived from three distinct biomass sources: almond (AMBC), walnut (WMBC), and peanut (PMBC) shells for magnetic solid-phase extraction (MSPE) of naproxen, a non-steroidal anti-inflammatory drug, from human saliva prior to LC-MS analysis. The three magnetic biochars were synthesized and characterized through IR, XRD, SEM, and EDX analyses. This work explored the factors influencing extraction efficiency using these three bioadsorbents through experimental design. The results obtained revealed that magnetic biochar derived from almond shells demonstrated outstanding performance in terms of naproxen extraction, achieving an impressive yield of 100.2%. This remarkable efficiency was achieved by optimizing parameters, including a 12-minute extraction time, a 3.5 mL elution volume, a 10 mg adsorbent mass, and a 4-minute elution time. Consequently, this study established almond shell as a low-cost, environmentally friendly, and efficient magnetic biochar for extracting naproxen from human saliva. This superior performance was made possible due to the abundant lignocellulosic potential inherent in almond shell structures, surpassing that of the other two biochars. The combination of magnetic extraction with LC-MS demonstrates good linearity, with an R2 value equal to 0.9987. The limits of detection (LOD) and quantification (LOQ) are 0.013 and 0.047 µg L-1, respectively.


Assuntos
Carvão Vegetal , Naproxeno , Saliva , Humanos , Naproxeno/química , Biomassa , Extração em Fase Sólida/métodos , Fenômenos Magnéticos
2.
J Sep Sci ; 46(20): e2300290, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37582642

RESUMO

To address sustainability issues, the green synthesis of nanomaterials has recently received considerable attention. This article addresses a novel and cost-effective adsorbent for the extraction of eight phenyl-N-methylcarbamate insecticides from water samples. We first synthesized a magnetite/hydroxyapatite nanocomposite using snail shell powder via an environmental friendly approach. The morphology and physicochemical properties of magnetic hydroxyapatite were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Magnetic extraction parameters were optimized using a Doehlert matrix. Under optimum conditions, the magnetic extraction coupled with a LC-MS method shows good linearity with R2 ≥ 0.9982, suitable intra- and interday precision, and limits of detection and quantification in the range of 0.052-0.093 µg/L and 0.11-0.31 µg/L, respectively. Satisfactory relative recoveries of all carbamates were achieved from fortified water samples in the range of 93.89-101.01%.

3.
Chemosphere ; 333: 138847, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187374

RESUMO

In this work, it is studied the photolysis, electrolysis, and photo-electrolysis of a mixture of pharmaceutics (sulfadiazine, naproxen, diclofenac, ketoprofen and ibuprofen) contained in two very different types of real water matrices (obtained from surface and porewater reservoirs), trying to clarify the role of the matrix on the degradation of the pollutants. To do this, a new metrological approach was also developed for screening of pharmaceuticals in waters by capillary liquid chromatography mass spectrometry (CLC-MS). This allows the detection at concentrations lower than 10 ng mL-1. Results obtained in the degradation tests demonstrate that inorganic composition of the water matrix directly influences on the efficiency of the drugs removal by the different EAOPs and better degradation results were obtained for experiments carried out with surface water. The most recalcitrant drug studied was ibuprofen for all processes evaluated, while diclofenac and ketoprofen were found to be the easiest drugs for being degraded. Photo-electrolysis was found to be more efficient than photolysis and electrolysis, and the increase in the current density was found to attain a slight improvement in the removal although with an associated huge increase in the energy consumption. The main reaction pathways for each drug and technology were also proposed.


Assuntos
Cetoprofeno , Poluentes Químicos da Água , Diclofenaco/química , Cetoprofeno/análise , Ibuprofeno/análise , Água/química , Poluentes Químicos da Água/análise , Preparações Farmacêuticas
4.
Anal Bioanal Chem ; 415(11): 2071-2080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808275

RESUMO

An electrochemical sensor based on a screen-printed carbon electrode (SPCE) modified with porphyrin-functionalized magnetic graphene oxide (TCPP-MGO) was developed for the sensitive and selective determination of malondialdehyde (MDA), an important biomarker of oxidative damage, in serum samples. The coupling of TCPP with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration, and manipulation of analyte, which is selectively captured onto the TCPP-MGO surface. The electron-transfer capability in the SPCE was improved through derivatization of MDA with diaminonaphthalene (DAN) (MDA-DAN). TCPP-MGO-SPCEs have been employed to monitor the differential pulse voltammetry (DVP) levels of the whole material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01-100 µM) with a correlation coefficient of 0.9996. The practical limit of quantification (P-LOQ) of the analyte was 0.010 µM, and the relative standard deviation (RSD) was 6.87% for 30 µM MDA concentration. Finally, the developed electrochemical sensor has demonstrated to be adequate for bioanalytical applications, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.


Assuntos
Grafite , Óxido de Magnésio , Malondialdeído , Grafite/química , Carbono/química , Eletrodos , Fenômenos Magnéticos , Técnicas Eletroquímicas
5.
J Chromatogr Sci ; 61(2): 186-194, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091741

RESUMO

An analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry detection (LC-ESI-MS/MS) has been developed for the determination of pharmaceutical compounds in water samples. Five non-steroidal anti-inflammatory drugs (NSAIDs) namely Naproxen, Ketoprofen, Piroxicam, Diflunisal and Celecoxib were investigated. Magnetic solid phase extraction (MSPE) was used for sample pre concentration of water samples and magnetic carbon nanotubes (Fe3O4-MWCNTs) were considered as solid phase extraction sorbent. Important parameters influencing the extraction efficiency such as nature and volume of eluent, sample pH and adsorbent mass were optimized. The developed MSPE method involved 75 mg of Fe3O4-MWCNTs sorbent, 5 mL of water sample at pH = 4 and 5 mL of 10% ammonia in methanol in the elution step. Under the optimized extraction conditions, linearity, detection and quantification limits and reproducibility were evaluated. The proposed method was successfully applied to the analysis of NSAIDs in surface waters, and mean recoveries of all the NSAIDs were above 90% with relative standard deviations < 17%. The detection and quantification limits were comprised between 0.05-3.6 ng.mL-1 and 0.2-11.9 ng.mL-1, respectively.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Água/química , Espectrometria de Massas em Tandem/métodos , Óxido Ferroso-Férrico , Reprodutibilidade dos Testes , Limite de Detecção , Anti-Inflamatórios não Esteroides/análise , Cromatografia Líquida/métodos , Extração em Fase Sólida/métodos , Fenômenos Magnéticos
6.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682910

RESUMO

Unlike humans, some animals have evolved a physiological ability to deposit porphyrins, which are pigments produced during heme synthesis in cells, in the skin and associated integument such as hair. Given the inert nature and easiness of collection of hair, animals that present porphyrin-based pigmentation constitute unique models for porphyrin analysis in biological samples. Here we present the development of a simple, rapid, and efficient analytical method for four natural porphyrins (uroporphyrin I, coproporphyrin I, coproporphyrin III and protoporphyrin IX) in the Southern flying squirrel Glaucomys volans, a mammal with hair that fluoresces and that we suspected has porphyrin-based pigmentation. The method is based on capillary liquid chromatography-mass spectrometry (CLC-MS), after an extraction procedure with formic acid and acetonitrile. The resulting limits of detection (LOD) and quantification (LOQ) were 0.006-0.199 and 0.021-0.665 µg mL-1, respectively. This approach enabled us to quantify porphyrins in flying squirrel hairs at concentrations of 3.6-353.2 µg g-1 with 86.4-98.6% extraction yields. This method provides higher simplicity, precision, selectivity, and sensitivity than other methods used to date, presenting the potential to become the standard technique for porphyrin analysis.


Assuntos
Porfirinas , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Cabelo/química , Mamíferos , Espectrometria de Massas , Porfirinas/química
7.
Talanta ; 226: 122106, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676662

RESUMO

A simple and rapid microextraction procedure is reported on the use of ionic liquid (IL) in combination with magnetic multiwalled carbon nanotubes (MMWCNTs). The procedure is based on temperature-controlled IL dispersive liquid phase microextraction (DLPME) and MMWCNTs, for selective preconcentration of N-methylcarbamate pesticides in water samples, followed by their hydrolysis in alkaline buffer, prior to being analyzed by capillary electrophoresis. The extraction procedure uses small volume of organic solvents, and there is no need for centrifugation. In the experimental approach the IL was quickly disrupted by an ultrasonic probe, heated with the temperature controlled at 90 °C and dispersed in water samples in a homogenous form. At this stage, N-methylcarbamate pesticides migrate into the IL. Then the solution was cooled and small amounts of MMWCNTs were dispersed into the sample solutions to adsorb the ionic liquid containing the analytes and phase separation was completed. The ionic liquid allowed the microextraction of the analytes and a small volume of dichloromethane (DCM) was used for elution. MMWCNTs favored the adsorption of the ionic liquid with the analytes and improved the final recovery with respect to the use of simple magnetic nanoparticles as a sorbent material. Under the optimum conditions, limit of quantifications (LOQ) were achieved in the 5.6-9.3 ng mL-1 range, with recoveries between 85.0% and 102.4%.

8.
J Phys Chem A ; 122(4): 992-1003, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293002

RESUMO

The gas-phase interactions of uracil (Ura) with dimethyltin(IV) were studied by a combined experimental and theoretical approach. Positive-ion electrospray spectra show that the interaction of dimethyltin(IV) with Ura results in the formation of the [(CH3)2Sn(Ura-H)]+ ion. The tandem mass spectrometry spectrum of this complex is characterized by numerous fragmentation processes, notably associated with elimination of H,N,C,O and C3,H3,N,O moieties, as well as the unusual loss of C2H6 leading to the [Sn(Ura-H)]+ complex. In turn, the [Sn(Ura-H)]+ complex fragments according to pathways already observed for the [Pb(Ura-H)]+ analogue. Sequential losses of ·CH3 radicals are also observed from the [(CH3)2Sn(N,C,O)]+ species (m/z 192). Comparison between density functional theory-computed vibrational spectra and the infrared multiple photon dissociation spectrum recorded between 1000 and 1900 cm-1 shows a good agreement as far as the global minimum is concerned. This comparison points to a bidentate interaction with a deprotonated canonical diketo form of uracil, involving both the N3 and O4 electronegative centers. This binding scheme has been already reported for the Pb/uracil system. The bidentate form characterized by the interaction between dimethyltin with N3 and O2 centers is slightly less stable. Interconversion between the two structures is associated with a small activation barrier (56 kJ/mol). The potential energy surfaces were explored to account for the main fragmentations observed upon collision-induced dissociation.

9.
J Mass Spectrom ; 51(11): 1006-1015, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27428725

RESUMO

The gas-phase interactions of cysteine with di-organotin and tri-organotin compounds have been studied by mass spectrometry experiments and quantum calculations. Positive-ion electrospray spectra show that the interaction of di- and tri-organotins with cysteine results in the formation of [(R)2 Sn(Cys-H)]+ and [(R)3 Sn(Cys)]+ ions, respectively. MS/MS spectra of [(R)2 Sn(Cys-H)]+ complexes are characterized by numerous fragmentation processes, notably associated with elimination of NH3 and (C,H2 ,O2 ). Several dissociation routes are characteristic of each given organic species. Upon collision, both the [(R)3 Sn(Gly)]+ and [(R)3 Sn(Cys)]+ complexes are associated with elimination of the intact amino acid, leading to the formation of [(R)3 Sn]+ cation. But for the latter complex, two additional fragmentation processes are observed, associated with the elimination of NH3 and C3 H4 O2 S. Calculations indicate that the interaction between organotins and cysteine is predominantly electrostatic but also exhibits a considerable covalent character, which is slightly more pronounced in tri-organotin complexes. A preferred bidentate interaction of the type -η2 -S-NH2 , with sulfur and the amino group, is observed. As for the [(R)3 Sn(Cys)]+ complexes, their stability is due to the combination of the hydrogen bond taking place between the amino group and the sulfur lone pair and the interaction between the carboxylic oxygen atom and the metal. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cisteína/química , Compostos Orgânicos de Estanho/química , Espectrometria de Massas em Tandem/métodos , Modelos Químicos , Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletricidade Estática , Volatilização
10.
J Mass Spectrom ; 48(7): 795-806, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23832935

RESUMO

Gas-phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive-ion electrospray spectra show that the interaction of di- and tri-organotins with glycine results in the formation of [(R)2Sn(Gly)-H](+) and [(R)3Sn(Gly)](+) ions, respectively. Di-organotin complexes appear much more reactive than those involving tri-organotins. (MS/MS) spectra of the [(R)3Sn(Gly)](+) ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn](+) carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)-H](+) complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH](+) (-57 u),[(R)2SnNH2](+) (-58 u) and [(R)2SnH](+) (-73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH](+) and [(R2)SnNH2](+) ions. Interestingly, formation [(R)2SnH](+) ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)-H](+) complexes, a preferable bidentate interaction of the type η(2)-O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn](+) ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes.


Assuntos
Glicina/química , Compostos Orgânicos de Estanho/química , Gases/química , Íons/química , Modelos Moleculares , Prótons , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...