Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 593(18): 4181-99, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26096614

RESUMO

KEY POINTS: Loss-of-function mutations of the skeletal muscle ClC-1 channel cause myotonia congenita with variable phenotypes. Using patch clamp we show that F484L, located in the conducting pore, probably induces mild dominant myotonia by right-shifting the slow gating of ClC-1 channel, without exerting a dominant-negative effect on the wild-type (WT) subunit. Molecular dynamics simulations suggest that F484L affects the slow gate by increasing the frequency and the stability of H-bond formation between E232 in helix F and Y578 in helix R. Three other myotonic ClC-1 mutations are shown to produce distinct effects on channel function: L198P shifts the slow gate to positive potentials, V640G reduces channel activity, while L628P displays a WT-like behaviour (electrophysiology data only). Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function. ABSTRACT: Myotonia congenita is an inherited disease caused by loss-of-function mutations of the skeletal muscle ClC-1 chloride channel, characterized by impaired muscle relaxation after contraction and stiffness. In the present study, we provided an in-depth characterization of F484L, a mutation previously identified in dominant myotonia, in order to define the genotype-phenotype correlation, and to elucidate the contribution of this pore residue to the mechanisms of ClC-1 gating. Patch-clamp recordings showed that F484L reduced chloride currents at every tested potential and dramatically right-shifted the voltage dependence of slow gating, thus contributing to the mild clinical phenotype of affected heterozygote carriers. Unlike dominant mutations located at the dimer interface, no dominant-negative effect was observed when F484L mutant subunits were co-expressed with wild type. Molecular dynamics simulations further revealed that F484L affected the slow gate by increasing the frequency and stability of the H-bond formation between the pore residue E232 and the R helix residue Y578. In addition, using patch-clamp electrophysiology, we characterized three other myotonic ClC-1 mutations. We proved that the dominant L198P mutation in the channel pore also right-shifted the voltage dependence of slow gating, recapitulating mild myotonia. The recessive V640G mutant drastically reduced channel function, which probably accounts for myotonia. In contrast, the recessive L628P mutant produced currents very similar to wild type, suggesting that the occurrence of the compound truncating mutation (Q812X) or other muscle-specific mechanisms accounted for the severe symptoms observed in this family. Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function.


Assuntos
Canais de Cloreto/genética , Mutação/genética , Miotonia Congênita/genética , Adulto , Idoso , Criança , Feminino , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Ativação do Canal Iônico/genética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
2.
Osteoarthritis Cartilage ; 23(7): 1226-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25797039

RESUMO

OBJECTIVE: To contribute to clarify molecular mechanisms supporting senescence and de-differentiation of chondrocytes in chondrocyte pathologies such as osteoarthritis (OA). Specifically, we investigated the relationship between the nuclear lamina protein Lamin B1 and the negative regulator of chondrogenesis Slug transcription factor in osteoarthritic chondrocytes. METHODS: Lamin B1 and Slug proteins were analyzed in cartilage explants from normal subjects and OA patients by immunohistochemical technique. Their expression was confirmed on isolated chondrocytes both at passage 0 and passage 2 (de-differentiated chondrocytes) by immunofluorescence and western blot. Subsequently, we explored the "in vivo" binding of Slug on LMNB1 promoter by chromatin immunoprecipitation assay (ChIP). RESULTS: In this study we demonstrated that nuclear lamina protein Lamin B1 and anti-chondrogenic Slug transcription factor are upregulated in cartilage and OA chondrocytes. Furthermore, we found that Slug is "in vivo" recruited by LMNB1 gene promoter mostly when chondrocytes undergo de-differentiation or OA degeneration. CONCLUSIONS: We described for the first time a potential regulatory role of Slug on the LMNB1 gene expression in OA chondrocytes. These findings may have important implications for the study of premature senescence, and degeneration of cartilage, and may contribute to develop effective therapeutic strategies against signals supporting cartilage damage in different subsets of patients.


Assuntos
Condrócitos/metabolismo , Laminina/biossíntese , Osteoartrite do Joelho/metabolismo , Fatores de Transcrição/biossíntese , Idoso , Cartilagem Articular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Feminino , Humanos , Articulação do Joelho/metabolismo , Laminina/genética , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Regulação para Cima
3.
Eur J Histochem ; 56(4): e45, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23361241

RESUMO

Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs), have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.


Assuntos
Membrana Nuclear/patologia , Estresse Oxidativo , Humanos , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Progéria/fisiopatologia
5.
Cell Death Differ ; 18(8): 1305-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21311568

RESUMO

Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Anticolesterolemiantes/farmacologia , Diferenciação Celular , Células Cultivadas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lamina Tipo A , Lovastatina/farmacologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia , Mioblastos/citologia , Mioblastos/metabolismo , Prenilação , Células-Tronco/citologia , Células-Tronco/fisiologia
6.
Eur J Histochem ; 55(4): e36, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22297442

RESUMO

Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2alpha distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.


Assuntos
Autofagia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Progéria/patologia , Precursores de Proteínas/metabolismo , Sirolimo/farmacologia , Antibacterianos/farmacologia , Western Blotting , Células Cultivadas , Criança , Cromatina/metabolismo , Humanos , Lamina Tipo A , Membrana Nuclear/efeitos dos fármacos , Prenilação
7.
Diabet Med ; 27(10): 1178-87, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20854387

RESUMO

AIMS: Beradinelli-Seip congenital generalized lipodystrophy is a rare autosomal recessive disorder characterized by near-complete absence of adipose tissue, Herculean appearance, insulin resistance, hypoleptinaemia and diabetes mellitus. The aim of this study was to investigate the in vitro effects of pioglitazone on the expression of genes involved in adipogenesis in fibroblasts from a patient with this condition due to a seipin mutation. METHODS: Primary cultures of fibroblasts from the skin of the patient were obtained. Fibroblasts were treated with classic adipose differentiation medium, with and without pioglitazone. Several adipogenes were evaluated by real-time reverse transcriptase-polymerase chain reaction and western blotting. Intracellular localization of prelamin A was studied by immunofluorescence microscopy. RESULTS: The expression of the adipogenic genes PPARG, LPL, LEP and SLC2A4 was reduced in lipodystrophic fibroblasts, while treatment with pioglitazone increased the expression of these genes. Moreover, and unexpectedly, we found an accumulation of farnesylated prelamin A in lipodystrophic fibroblasts. CONCLUSIONS: The process of adipocyte differentiation is compromised in patients with Beradinelli-Seip congenital lipodystrophy owing to diminished expression of the regulatory genes involved, which pioglitazone treatment partially rescues. Prelamin A accumulation establishes a link with other types of familial lipodystrophies, as familial partial lipodystrophy.


Assuntos
Adipogenia/genética , Fibroblastos/metabolismo , Lipodistrofia Generalizada Congênita/genética , Tiazolidinedionas/uso terapêutico , Adipogenia/efeitos dos fármacos , Adolescente , Western Blotting , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Humanos , Lipodistrofia Generalizada Congênita/tratamento farmacológico , Lipodistrofia Generalizada Congênita/metabolismo , Masculino , Pioglitazona
8.
Neuromuscul Disord ; 20(8): 512-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20580235

RESUMO

Mutations in the lamin A/C gene (LMNA) are known to be involved in several diseases such as Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy type 1B and dilated cardiomyopathies with conduction disease, with considerable phenotype heterogeneity. Here we report on a novel autosomal dominant mutation in LMNA in two direct relatives presenting with different clinical phenotypes, characterized by severe life-threatening limb-girdle muscle involvement and cardiac dysfunction treated with heart transplantation in the proband, and by ventricular tachyarrhythmias with preserved cardiac and skeletal muscle function in her young son. To our knowledge, this is the first report of a duplication in the LMNA gene. The two phenotypes described could reflect different clinical stages of the same disease. We hypothesize that early recognition and initiation of therapeutic manoeuvres in the younger patient may retard the rate of progression of the cardiomyopathy.


Assuntos
Cardiopatias/genética , Cardiopatias/fisiopatologia , Transplante de Coração/fisiologia , Coração/fisiopatologia , Lamina Tipo A/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Adulto , Sequência de Aminoácidos , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Eletrocardiografia , Feminino , Duplicação Gênica , Cardiopatias/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Debilidade Muscular/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/patologia , Proteínas Nucleares/genética , Linhagem , Fenótipo , Volume Sistólico/fisiologia , Tomografia Computadorizada por Raios X
9.
Eur J Histochem ; 53(1): 43-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19351612

RESUMO

Lamin A is a component of the nuclear lamina mutated in a group of human inherited disorders known as laminopathies. Among laminopathies, progeroid syndromes and lipodystrophies feature accumulation of prelamin A, the precursor protein which, in normal cells, undergoes a multi-step processing to yield mature lamin A. It is of utmost importance to characterize the prelamin A form accumulated in each laminopathy, since existing evidence shows that drugs acting on protein processing can improve some pathological aspects.We report that two antibodies raised against differently modified prelamin A peptides show a clear specificity to full-length prelamin A or carboxymethylated farnesylated prelamin A, respectively. Using these antibodies, we demonstrated that inhibition of the prelamin A endoprotease ZMPSTE24 mostly elicits accumulation of full-length prelamin A in its farnesylated form, while loss of the prelamin A cleavage site causes accumulation of carboxymethylated prelamin A in progeria cells. These results suggest a major role of ZMPSTE24 in the first prelamin A cleavage step.


Assuntos
Proteínas de Membrana/fisiologia , Metaloendopeptidases/fisiologia , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Endopeptidases/metabolismo , Fibroblastos/metabolismo , Humanos , Lamina Tipo A , Proteínas de Membrana/antagonistas & inibidores , Metaloendopeptidases/antagonistas & inibidores , Progéria/patologia , Prenilação de Proteína , Coelhos/imunologia
10.
J Med Genet ; 46(1): 40-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18805829

RESUMO

BACKGROUND: Type 2 familial partial lipodystrophy (FPLD2) is characterised by loss of fat in the limbs and buttocks and results from mutations in the LMNA gene. AIM: To evaluate the role of several genes involved in adipogenesis in order to better understand the underlying mechanisms of regional loss of subcutaneous adipose tissue (scAT) in patients with FPLD2. METHODS: In total, 7 patients with FPLD2 and 10 healthy control participants were studied. A minimal model was used to calculate the insulin sensitivity (IS). scAT was obtained from abdomen and thigh by biopsy. Relative gene expression was quantified by real-time reverse transcription PCR in a thermal cycler. Prelamin A western blot analysis was carried out on scAT and prelamin A nuclear localisation was determined using immunofluorescence. Adipocyte nuclei were examined by electron microscopy. RESULTS: Patients with FPLD2 were found to have significantly lower IS. The expression of LMNA was similar in both groups. The expression of PPARG2, RB1, CCND3 and LPL in thigh but not in abdomen scAT was significantly reduced (67%, 25%, 38% and 66% respectively) in patients with FPLD2. Significantly higher levels of prelamin A were found in peripheral scAT of patients with FPLD2. Defects in the peripheral heterochromatin and a nuclear fibrous dense lamina were present in the adipocytes of patients with FPLD2. CONCLUSIONS: In FPLD2 participants, prelamin A accumulation in peripheral scAT is associated with a reduced expression of several genes involved in adipogenesis, which could perturb the balance between proliferation and differentiation in adipocytes, leading to less efficient tissue regeneration.


Assuntos
Lipodistrofia Parcial Familiar/genética , Proteínas Nucleares/genética , Precursores de Proteínas/genética , Gordura Subcutânea/patologia , Adipogenia/genética , Tecido Adiposo/patologia , Adulto , Feminino , Imunofluorescência , Genes Reguladores , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Gordura Subcutânea/ultraestrutura
11.
Eur J Histochem ; 53(1): e6, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30256865

RESUMO

Lamin A is a component of the nuclear lamina mutated in a group of human inherited disorders known as laminopathies. Among laminopathies, progeroid syndromes and lipodystrophies feature accumulation of prelamin A, the precursor protein which, in normal cells, undergoes a multi-step processing to yield mature lamin A. It is of utmost importance to characterize the prelamin A form accumulated in each laminopathy, since existing evidence shows that drugs acting on protein processing can improve some pathological aspects. We report that two antibodies raised against differently modified prelamin A peptides show a clear specificity to full-length prelamin A or carboxymethylated farnesylated prelamin A, respectively. Using these antibodies, we demonstrated that inhibition of the prelamin A endoprotease ZMPSTE24 mostly elicits accumulation of full-length prelamin A in its farnesylated form, while loss of the prelamin A cleavage site causes accumulation of carboxymethylated prelamin A in progeria cells. These results suggest a major role of ZMPSTE24 in the first prelamin A cleavage step.

12.
Crit Rev Eukaryot Gene Expr ; 17(4): 317-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17725496

RESUMO

The precursor protein of the nuclear lamina constituent lamin A is a 74-kDa protein called prelamin A which undergoes subsequent steps of posttranslational modification at its C-terminal CaaX residue. The unexpected finding that accumulation of unprocessable prelamin A is the molecular basis of the most severe laminopathies so far identified, including Hutchinson-Gilford progeria and restrictive dermopathy, has opened new perspectives in the study of the pathogenic mechanisms causing all lamin A/C-linked disorders, as well as new interest in the analysis of molecular mechanisms regulating prelamin A processing. However, complete knowledge of the cellular pathways affected downstream of prelamin A accumulation is still lacking, but it could give new insights both in normal and pathogenic mechanisms regulated by lamins. In this article, we review the involvement of defects of prelamin A processing in the pathogenesis of a group of laminopathies. In particular, we discuss the possibility that mutations leading to accumulation of particular forms of prelamin A result in specific nuclear abnormalities and impairment of nuclear functions leading to cell senescence or altered metabolism.


Assuntos
Laminina/fisiologia , Proteínas Nucleares/fisiologia , Precursores de Proteínas/fisiologia , Animais , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Lamina Tipo A , Mutação , Proteínas Nucleares/genética , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional
13.
Eur J Histochem ; 50(1): 1-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16584978

RESUMO

The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnormal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin areas, suggesting a major involvement of emerin in pre-lamin A-mediated mechanisms of chromatin remodeling.


Assuntos
Montagem e Desmontagem da Cromatina , Heterocromatina , Lamina Tipo A , Membrana Nuclear/metabolismo , Senilidade Prematura/genética , Animais , Montagem e Desmontagem da Cromatina/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação , Proteínas Nucleares , Timopoietinas/genética , Timopoietinas/metabolismo
14.
Eur J Histochem ; 49(4): 355-62, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16377577

RESUMO

The fate of emerin during skeletal muscle regeneration was investigated in an animal model by means of crush injury. Immunofluorescence, immunoblotting and mRNA analysis demonstrated that emerin level is increased in regenerating rat muscle fibers with respect to normal mature myofibers. This finding suggests an involvement of emerin during the muscle fiber regeneration process, in analogy with its reported involvement in muscle cell differentiation in vitro. The impairment of skeletal muscle physiological regeneration or reorganization could be a possible pathogenetic mechanism for Emery Dreifuss muscular dystrophy.


Assuntos
Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Timopoietinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Células Cultivadas , Imunofluorescência , Immunoblotting , Imuno-Histoquímica , Masculino , Modelos Animais , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas Nucleares , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
15.
Cell Mol Life Sci ; 62(22): 2669-78, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16261260

RESUMO

Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment.


Assuntos
Heterocromatina/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Progéria/tratamento farmacológico , Progéria/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Células Cultivadas , Criança , Metilação de DNA , Heterocromatina/ultraestrutura , Histonas/metabolismo , Humanos , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lovastatina/farmacologia , Progéria/metabolismo , Progéria/patologia , Precursores de Proteínas/metabolismo , Ribonucleoproteínas/metabolismo
16.
J Med Genet ; 42(3): 214-20, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15744034

RESUMO

BACKGROUND: Skeletal muscle disorders associated with mutations of lamin A/C gene include autosomal Emery-Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B. The pathogenic mechanism underlying these diseases is unknown. Recent data suggest an impairment of signalling mechanisms as a possible cause of muscle malfunction. A molecular complex in muscle cells formed by lamin A/C, emerin, and nuclear actin has been identified. The stability of this protein complex appears to be related to phosphorylation mechanisms. OBJECTIVE: To analyse lamin A/C phosphorylation in control and laminopathic muscle cells. METHODS: Lamin A/C N-terminal phosphorylation was determined in cultured mouse myoblasts using a specific antibody. Insulin treatment of serum starved myoblast cultures was carried out to evaluate involvement of insulin signalling in the phosphorylation pathway. Screening of four Emery-Dreifuss and one limb girdle muscular dystrophy 1B cases was undertaken to investigate lamin A/C phosphorylation in both cultured myoblasts and mature muscle fibres. RESULTS: Phosphorylation of lamin A was observed during myoblast differentiation or proliferation, along with reduced lamin A/C phosphorylation in quiescent myoblasts. Lamin A N-terminus phosphorylation was induced by an insulin stimulus, which conversely did not affect lamin C phosphorylation. Lamin A/C was also hyperphosphorylated in mature muscle, mostly in regenerating fibres. Lamin A/C phosphorylation was strikingly reduced in laminopathic myoblasts and muscle fibres, while it was preserved in interstitial fibroblasts. CONCLUSIONS: Altered lamin A/C interplay with a muscle specific phosphorylation partner might be involved in the pathogenic mechanism of Emery-Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B.


Assuntos
Lamina Tipo A/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mioblastos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Insulina/metabolismo , Lamina Tipo A/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Fosforilação , Transdução de Sinais
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 1): 061923, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15244633

RESUMO

We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects. We find that delays in the oscillatory components of the time series depend on the frequency bands that are considered, in particular we find a change of sign in the phase shift going from the very low frequency band to the high frequency band. This behavior should reflect a collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some models describing such systems, e.g., the Winfree and the Kuramoto models, offer a clue to this phenomenon. For these theoretical models there is a linear relationship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally emerges.


Assuntos
Relógios Biológicos/fisiologia , Pressão Sanguínea/fisiologia , Diástole/fisiologia , Modelos Cardiovasculares , Fluxo Pulsátil/fisiologia , Sístole/fisiologia , Simulação por Computador , Humanos , Pessoa de Meia-Idade , Periodicidade
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(2 Pt 1): 021801, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14995477

RESUMO

We study the statistical mechanics of grafted polymers of arbitrary stiffness in a two-dimensional embedding space with Monte Carlo simulations. The probability distribution function of the free end is found to be highly anisotropic and non-Gaussian for typical semiflexible polymers. The reduced distribution in the transverse direction, a Gaussian in the stiff and flexible limits, shows a double-peak structure at intermediate stiffnesses. We also explore the response to a transverse force applied at the polymer free end. We identify F-Actin as an ideal benchmark for the effects discussed.

19.
Cell Mol Life Sci ; 60(12): 2710-20, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14685694

RESUMO

Serine/threonine kinase Akt/PKB intracellular distribution undergoes rapid changes in response to agonists such as Platelet-derived growth factor (PDGF) or Insulin-like growth factor (IGF). The concept has recently emerged that Akt subcellular movements are facilitated by interaction with nonsubstrate ligands. Here we show that Akt is bound to the actin skeleton in in situ cytoskeletal matrix preparations from PDGF-treated Saos2 cells, suggesting an interaction between the two proteins. Indeed, by immunoprecipitation and subcellular fractioning, we demonstrate that endogenous Akt and actin physically interact. Using recombinant proteins in in vitro binding and overlay assays, we further demonstrate that Akt interacts with actin directly. Expression of Akt mutants strongly indicates that the N-terminal PH domain of Akt mediates this interaction. More important, we show that the partition between actin bound and unbound Akt is not constant, but is modulated by growth factor stimulation. In fact, PDGF treatment of serum-starved cells triggers an increase in the amount of Akt associated with the actin skeleton, concomitant with an increase in Akt phosphorylation. Conversely, expression of an Akt mutant in which both Ser473 and Thr308 have been mutated to alanine completely abrogates PDGF-induced binding. The small GTPases Rac1 and Cdc42 seem to facilitate actin binding, possibly increasing Akt phosphorylation.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt , Proteína cdc42 de Ligação ao GTP/metabolismo
20.
Eur J Histochem ; 47(1): 3-16, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12685553

RESUMO

The present review summarizes recent cytochemical findings on the functional organization of the nuclear domains, with a particular emphasis on the relation between nuclear envelope-associated proteins and chromatin. Mutations in two nuclear envelope-associated proteins, emerin and lamin A/C cause the Emery-Dreifuss muscular dystrophy; the cellular pathology associated with the disease and the functional role of emerin and lamin A/C in muscle cells are not well established. On the other hand, a large body of evidence indicates that nuclear envelope-associated proteins are involved in tissue-specific gene regulation. Moreover, chromatin remodeling complexes trigger gene expression by utilizing the nuclear matrix-associated actin, which is known to interact with both emerin and lamin A/C. It is thus conceivable that altered expression of these nuclear envelope-associated proteins can account for an impairment of gene expression mainly during cell differentiation as suggested by recent experimental findings on the involvement of emerin in myogenesis. The possibility that Emery-Deifuss muscular dystrophy pathogenesis could involve alteration of the signaling pathway is considered.


Assuntos
Imuno-Histoquímica , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Membrana Nuclear/metabolismo , Expressão Gênica , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Membrana Nuclear/genética , Proteínas Nucleares , Transdução de Sinais , Timopoietinas/genética , Timopoietinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...