Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 300(3): 560-576, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27813325

RESUMO

We previously demonstrated that OVE transgenic diabetic mice are susceptible to chronic complications of diabetic nephropathy (DN) including substantial oxidative damage to the renal glomerular filtration barrier (GFB). Importantly, the damage was mitigated significantly by overexpression of the powerful antioxidant, metallothionein (MT) in podocytes. To test our hypothesis that GFB damage in OVE mice is the result of endothelial oxidative insult, a new JTMT transgenic mouse was designed in which MT overexpression was targeted specifically to endothelial cells. At 60 days of age, JTMT mice were crossed with age-matched OVE diabetic mice to produce bi-transgenic OVE-JTMT diabetic progeny that carried the endothelial targeted JTMT transgene. Renal tissues from the OVE-JTMT progeny were examined by unbiased TEM stereometry for possible GFB damage and other alterations from chronic complications of DN. In 150 day-old OVE-JTMT mice, blood glucose and HbA1c were indistinguishable from age-matched OVE mice. However, endothelial-specific MT overexpression in OVE-JTMT mice mitigated several DN complications including significantly increased non-fenestrated glomerular endothelial area, and elimination of glomerular basement membrane thickening. Significant renoprotection was also observed outside of endothelial cells, including reduced podocyte effacement, and increased podocyte and total glomerular cell densities. Moreover, when compared to OVE diabetic animals, OVE-JTMT mice showed significant mitigation of nephromegaly, glomerular hypertrophy, increased mesangial cell numbers and increased total glomerular cell numbers. These results confirm the importance of oxidative stress to glomerular damage in DN, and show the central role of endothelial cell injury to the pathogenesis of chronic complications of diabetes. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:560-576, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Metalotioneína/metabolismo , Podócitos/metabolismo , Animais , Glicemia/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Glomérulos Renais/patologia , Metalotioneína/genética , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Podócitos/patologia
2.
Infect Immun ; 84(2): 416-24, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26573737

RESUMO

Host genetic variations play an important role in several pathogenic diseases, and we previously provided strong evidence that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive group A Streptococcus (GAS) patients, including sepsis and necrotizing soft tissue infections (NSTIs). The goal of the present study was to investigate how genetic variations and sex differences among four commonly used mouse strains contribute to variation in severity, manifestations, and outcomes of NSTIs. DBA/2J mice were more susceptible to NSTIs than C57BL/6J, BALB/c, and CD-1 mice, as exhibited by significantly greater bacteremia, excessive dissemination to the spleen, and significantly higher mortality. Differences in the sex of the mice also contributed to differences in disease severity and outcomes: DBA/2J female mice were relatively resistant compared to their male counterparts. However, DBA/2J mice exhibited minimal weight loss and developed smaller lesions than did the aforementioned strains. Moreover, at 48 h after infection, compared with C57BL/6J mice, DBA/2J mice had increased bacteremia, excessive dissemination to the spleen, and excessive concentrations of inflammatory cytokines and chemokines. These results indicate that variations in the host genetic context as well as sex play a dominant role in determining the severity of and susceptibility to GAS NSTIs.


Assuntos
Suscetibilidade a Doenças , Variação Genética , Caracteres Sexuais , Infecções dos Tecidos Moles/genética , Infecções Estreptocócicas/genética , Streptococcus pyogenes/patogenicidade , Animais , Carga Bacteriana , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Necrose , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/crescimento & desenvolvimento
3.
Anat Rec (Hoboken) ; 296(3): 480-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23381845

RESUMO

Diabetic cardiomyopathy is a clinically distinct disease characterized by impaired cardiac function as a result of reduced contractility and hypertension-induced athero- or arteriosclerosis. This may be due either to generalized vascular disease, tissue-based injury such as focal cardiomyocyte dysmorphia, or microvascular damage manifested by myocardial capillary basement membrane (CBM) thickening. Hyperglycemia-driven increases in reactive oxygen species (ROS) have been proposed to contribute to such damage. To address this hypothesis, we utilized light (LM) and transmission electron microscopy (TEM) to demonstrate cardiomyocyte morphology and myocardial CBM thickness in the left ventricles of four mouse genotypes: FVB (background Friend virus B controls), OVE (transgenic diabetics), Mt [transgenics with targeted overexpression of the antioxidant protein metallothionein (MT) in cardiomyocytes], and OVEMt (bi-transgenic cross of OVE and Mt) animals. Mice were prepared for morphometric analysis by vascular perfusion. Focal myocardial disorganization was identified in OVE mice but not in the remaining genotypes. Not unexpectedly, myocardial CBM thickness was increased significantly in OVE relative to FVB (P < 0.05) and Mt (P < 0.05) animals (+28% and +39.5%, respectively). Remarkably, however, OVEMt myocardial CBMs showed no increase in width; rather they were ~3% thinner than FVB controls. Although the molecular mechanisms regulating CBM width remain elusive, it seems possible that despite a significant hyperglycemic environment, MT antioxidant activity may mitigate local oxidative stress and reduce downstream excess microvascular extracellular matrix (ECM) formation. In addition, the reduction of intra- and perivascular ROS may protect against incipient endothelial damage and the CBM thickening that results from such injury.


Assuntos
Membrana Basal/metabolismo , Capilares/metabolismo , Vasos Coronários/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Metalotioneína/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Membrana Basal/ultraestrutura , Glicemia/metabolismo , Capilares/ultraestrutura , Vasos Coronários/ultraestrutura , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Genótipo , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Metalotioneína/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
4.
Diabetes Metab Res Rev ; 29(2): 113-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22926941

RESUMO

BACKGROUND: We previously demonstrated that cellular and extracellular components of the blood-urine barrier in renal glomeruli are susceptible to damage in OVE transgenic mice, a valuable model of human diabetic nephropathy that expresses profound albuminuria. METHODS: To test our hypothesis that glomerular filtration barrier damage in OVE mice may be the result of oxidative insult to podocytes, 150-day-old bi-transgenic OVENmt diabetic mice that overexpress the antioxidant metallothionein specifically in podocytes were examined by enzyme-linked immunosorbent assay for albuminuria mitigation and by unbiased transmission electron microscopy (TEM) stereometry for protection from chronic structural diabetic complications. RESULTS: Although blood glucose and HbA(1c) levels were indistinguishable in OVE and OVENmt animals, albuminuria was significantly reduced (average >7-fold) in OVENmt mice through 8 months of age. Interestingly, the Nmt transgene provided significant glomerular protection against diabetic nephropathic complications outside of the podocyte. Glomerular filtration barrier damage was reduced in OVENmt mice, including significantly increased area occupied by endothelial luminal fenestrations (~13%), significantly reduced glomerular basement membrane (GBM) thickening (~17%) and significantly less podocyte effacement (~18%). In addition, OVENmt mice exhibited significantly reduced glomerular volume (~50%), fewer glomerular endothelial cells (~33%), fewer mesangial cells (~57%) and fewer total glomerular cells (~40%). CONCLUSIONS: These results provide evidence of oxidative damage to podocytes induces primary diabetic nephropathic features including severe and sustained albuminuria, specific glomerular filtration barrier damage and alterations in glomerular endothelial and mesangial cell number. Importantly, these diabetic complications are significantly mitigated by podocyte targeted metallothionein overexpression.


Assuntos
Albuminúria/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Barreira de Filtração Glomerular/patologia , Metalotioneína/biossíntese , Podócitos/metabolismo , Animais , Nefropatias Diabéticas/fisiopatologia , Membrana Basal Glomerular/fisiopatologia , Barreira de Filtração Glomerular/fisiopatologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Metalotioneína/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Podócitos/patologia
5.
J Cell Sci ; 125(Pt 2): 507-15, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22302984

RESUMO

Intracellular bacteria have been shown to cause autophagy, which impacts infectious outcomes, whereas extracellular bacteria have not been reported to activate autophagy. Here, we demonstrate that Pseudomonas aeruginosa, a Gram-negative extracellular bacterium, activates autophagy with considerably increased LC3 punctation in both an alveolar macrophage cell line (MH-S) and primary alveolar macrophages. Using the LC3 Gly120 mutant, we successfully demonstrated a hallmark of autophagy, conjugation of LC3 to phosphatidylethanolamine (PE). The accumulation of typical autophagosomes with double membranes was identified morphologically by transmission electron microscopy (TEM). Furthermore, the increase of PE-conjugated LC3 was indeed induced by infection rather than inhibition of lysosome degradation. P. aeruginosa induced autophagy through the classical beclin-1-Atg7-Atg5 pathway as determined by specific siRNA analysis. Rapamycin and IFN-γ (autophagy inducers) augmented bacterial clearance, whereas beclin-1 and Atg5 knockdown reduced intracellular bacteria. Thus, P. aeruginosa-induced autophagy represents a host protective mechanism, providing new insight into the pathogenesis of this infection.


Assuntos
Autofagia , Macrófagos Alveolares/metabolismo , Pseudomonas aeruginosa/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/ultraestrutura , Camundongos , Proteínas Associadas aos Microtúbulos/análise , Fagossomos/ultraestrutura
6.
Ultrastruct Pathol ; 35(2): 97-105, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21299351

RESUMO

The diabetic-prone BioBreeding Wistar (BB/DP) rat is an autoimmune model of insulin-dependent diabetes mellitus. Approximately 90% of the animals (BB/DPh) are hyperglycemic by 90-120 days of age, while the remaining ~10% (BB/DPn) and diabetes-resistant rats (BB/DR) are normoglycemic for life. The transmission electron microscope data from this study demonstrate expected significant age- and diabetes-related increases in retinal capillary basement membrane (RCBM) widths in (BB/DPh) rats relative to BB/DR animals. However, the data show, for the first time, an unexpected significant RCBM thickening in (BB/DPn) rats compared to BB/DR animals at 6 months and 1 year post-onset of hyperglycemia.


Assuntos
Membrana Basal/ultraestrutura , Glicemia/metabolismo , Capilares/ultraestrutura , Diabetes Mellitus Tipo 1/patologia , Retinopatia Diabética/patologia , Vasos Retinianos/ultraestrutura , Fatores Etários , Animais , Peso Corporal , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Retinopatia Diabética/sangue , Retinopatia Diabética/etiologia , Modelos Animais de Doenças , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Endogâmicos BB
7.
Anat Rec (Hoboken) ; 291(1): 114-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18085629

RESUMO

Recent studies show that podocyte nuclear density (N(V)) and numbers of renal podocytes per glomerulus (N) are altered in experimental and spontaneous diabetes mellitus. N(V) and N are generally reduced, and it has been hypothesized that these morphological changes may relate to the loss of glomerular permselectivity in diabetic nephropathy (DN). In the current study, OVE26 transgenic diabetic mice and age-matched (FVB) controls (60, 150, or 450 days) were fixed by vascular perfusion and renal cortical tissues were prepared for morphometric analyses. ImageJ software and point counting analyses were carried out on light and transmission electron micrographs to determine glomerular volume (V(G)), N(V), and N. As expected, mean V(G) in OVE26 mice increased substantially ( approximately 134%) over the course of the study and was significantly increased over FVB mice at all ages. At 60 days, N(V) and N were not statistically distinguishable in OVE26 and control mice, while at 150 days, N(V) was significantly reduced in diabetics but not N. In 450-day-old OVE26 animals, however, N(V) and N were both significantly decreased ( approximately 231% and approximately 99%, respectively) relative to age-matched FVB mice. These data suggest that in the OVE26 model of diabetes, significant podocyte loss occurs relatively late in the course of the disease. Moreover, it seems possible that these podocytic changes could play a role in sustaining the increased permeability of the blood-urine barrier in the later stages of diabetic renal decompensation.


Assuntos
Envelhecimento/patologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Podócitos/patologia , Animais , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Camundongos , Microscopia Eletrônica , Estatísticas não Paramétricas
8.
Anat Rec A Discov Mol Cell Evol Biol ; 271(2): 332-41, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12629676

RESUMO

Capillary basement membrane (CBM) thickening is an ultrastructural hallmark in diabetic patients and in animal models of diabetes. However, the wide variety of tissues sampled and diverse methods employed have made the interpretation of thickness data difficult. We showed previously that acellular glomerular BMs in OVE26 transgenic diabetic mice were thickened beyond normal age-related thickening, and in the current study we hypothesized that other microvascular BMs likewise would show increased widths relative to age-matched controls. Accordingly, a series of tissues, including skeletal and cardiac muscle, ocular retina and choriod, peripheral nerve, lung, pancreas, and renal glomerulus was collected from 300-350-day-old normal and transgenic mice. Transmission electron micrographs of cross sections through capillary walls were prepared, and CBM thickness (CBMT) was determined by the "orthogonal intercept" method. Morphometric analyses showed highly variable transgene-related BMT increases in the sampled tissues, with glomerular BM showing by far the greatest increase (+87%). Significant thickness increases were also seen in the retina, pulmonary alveolus, and thoracoabdominal diaphragm. BMT increases were not universal; however, most were modestly widened, and those that were thickest in controls generally showed the greatest increase. Although the pathogenesis of diabetes-related increases in CBM is poorly understood, data in the current study showed that in OVE26 transgenic mice increased BMT was a frequent concomitant of hyperglycemia. Accordingly, it seems likely that hyperglycemia-induced microvascular damage may be a contributing factor in diabetic BM disease, and that microvessel cellular and extracellular heterogeneity may limit the extent of CBM thickening in diverse tissues.


Assuntos
Membrana Basal/ultraestrutura , Capilares/ultraestrutura , Diabetes Mellitus Experimental/patologia , Animais , Membrana Basal/metabolismo , Peso Corporal , Capilares/metabolismo , Hemoglobinas/metabolismo , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Microscopia Eletrônica , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...