Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 8: 33, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600252

RESUMO

BACKGROUND: The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variation in clinical response to therapy has been observed. METHODS: We quantified the in vitro susceptibility of two T. equi isolates and a lab generated variant to both imidocarb dipropionate and a bumped kinase inhibitor compound 1294. We also evaluated the capacity of in vitro imidocarb dipropionate exposure to decrease susceptibility to that drug. The efficacy of imidocarb dipropionate for clearing infection in four T. equi infected ponies was also assessed. RESULTS: We observed an almost four-fold difference in imidocarb dipropionate susceptibility between two distinct isolates of T. equi. Four ponies infected with the less susceptible USDA Florida strain failed to clear the parasite despite two rounds of treatment. Importantly, a further 15-fold decrease in susceptibility was produced in this strain by continuous in vitro imidocarb dipropionate exposure. Despite a demonstrated difference in imidocarb dipropionate susceptibility, there was no difference in the susceptibility of two T. equi isolates to bumped kinase inhibitor 1294. CONCLUSIONS: The observed variation in imidocarb dipropionate susceptibility, further reduction in susceptibility caused by drug exposure in vitro, and failure to clear T. equi infection in vivo, raises concern for the emergence of drug resistance in clinical cases undergoing treatment. Bumped kinase inhibitors may be effective as alternative drugs for the treatment of resistant T. equi parasites.


Assuntos
Antiprotozoários/uso terapêutico , Resistência Microbiana a Medicamentos/genética , Doenças dos Cavalos/parasitologia , Theileria/genética , Theileriose/parasitologia , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Citometria de Fluxo , Quinase 2 de Adesão Focal/antagonistas & inibidores , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Imidocarbo/análogos & derivados , Imidocarbo/uso terapêutico , Concentração Inibidora 50 , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Alinhamento de Sequência , Especificidade da Espécie , Theileriose/tratamento farmacológico , Theileriose/epidemiologia , Estados Unidos/epidemiologia
2.
BMC Genomics ; 13: 603, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23137308

RESUMO

BACKGROUND: Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. RESULTS: The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. CONCLUSIONS: The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.


Assuntos
Genoma de Protozoário , Theileria/genética , Animais , Bovinos , Mapeamento Cromossômico , Cromossomos/genética , Cromossomos/metabolismo , Hibridização Genômica Comparativa , Metabolismo Energético/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fosfolipídeos/metabolismo , Filogenia , Proteínas de Protozoários/genética , Theileria/classificação , Theileriose/genética , Theileriose/metabolismo , Theileriose/parasitologia
3.
BMC Genomics ; 12: 410, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21838895

RESUMO

BACKGROUND: Virulence acquisition and loss is a dynamic adaptation of pathogens to thrive in changing milieus. We investigated the mechanisms of virulence loss at the whole genome level using Babesia bovis as a model apicomplexan in which genetically related attenuated parasites can be reliably derived from virulent parental strains in the natural host. We expected virulence loss to be accompanied by consistent changes at the gene level, and that such changes would be shared among attenuated parasites of diverse geographic and genetic background. RESULTS: Surprisingly, while single nucleotide polymorphisms in 14 genes distinguished all attenuated parasites from their virulent parental strains, all non-synonymous changes resulted in no deleterious amino acid modification that could consistently be associated with attenuation (or virulence) in this hemoparasite. Interestingly, however, attenuation significantly reduced the overall population's genome diversity with 81% of base pairs shared among attenuated strains, compared to only 60% of base pairs common among virulent parental parasites. There were significantly fewer genes that were unique to their geographical origins among the attenuated parasites, resulting in a simplified population structure among the attenuated strains. CONCLUSIONS: This simplified structure includes reduced diversity of the variant erythrocyte surface 1 (ves) multigene family repertoire among attenuated parasites when compared to virulent parental strains, possibly suggesting that overall variance in large protein families such as Variant Erythrocyte Surface Antigens has a critical role in expression of the virulence phenotype. In addition, the results suggest that virulence (or attenuation) mechanisms may not be shared among all populations of parasites at the gene level, but instead may reflect expansion or contraction of the population structure in response to shifting milieus.


Assuntos
Babesia bovis/genética , Babesia bovis/patogenicidade , Sangue/parasitologia , Variação Genética/genética , Genômica , Animais , Geografia , Fenótipo , Análise de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA