Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 196: 110317, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679202

RESUMO

BACKGROUND AND PURPOSE: Concerns over chest wall toxicity has led to debates on treating tumors adjacent to the chest wall with single-fraction stereotactic ablative radiotherapy (SABR). We performed a secondary analysis of patients treated on the prospective iSABR trial to determine the incidence and grade of chest wall pain and modeled dose-response to guide radiation planning and estimate risk. MATERIALS AND METHODS: This analysis included 99 tumors in 92 patients that were treated with 25 Gy in one fraction on the iSABR trial which individualized dose by tumor size and location. Toxicity events were prospectively collected and graded based on the CTCAE version 4. Dose-response modeling was performed using a logistic model with maximum likelihood method utilized for parameter fitting. RESULTS: There were 22 grade 1 or higher chest wall pain events, including five grade 2 events and zero grade 3 or higher events. The volume receiving at least 11 Gy (V11Gy) and the minimum dose to the hottest 2 cc (D2cc) were most highly correlated with toxicity. When dichotomized by an estimated incidence of ≥ 20 % toxicity, the D2cc > 17 Gy (36.6 % vs. 3.7 %, p < 0.01) and V11Gy > 28 cc (40.0 % vs. 8.1 %, p < 0.01) constraints were predictive of chest wall pain, including among a subset of patients with tumors abutting or adjacent to the chest wall. CONCLUSION: For small, peripheral tumors, single-fraction SABR is associated with modest rates of low-grade chest wall pain. Proximity to the chest wall may not contraindicate single fractionation when using highly conformal, image-guided techniques with sharp dose gradients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38493902

RESUMO

PURPOSE: We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS: A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS: Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS: This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38171387

RESUMO

PURPOSE: Ultrahigh-dose-rate (FLASH) irradiation has been reported to reduce normal tissue damage compared with conventional dose rate (CONV) irradiation without compromising tumor control. This proof-of-concept study aims to develop a deep learning (DL) approach to quantify the FLASH isoeffective dose (dose of CONV that would be required to produce the same effect as the given physical FLASH dose) with postirradiation mouse intestinal histology images. METHODS AND MATERIALS: Eighty-four healthy C57BL/6J female mice underwent 16 MeV electron CONV (0.12 Gy/s; n = 41) or FLASH (200 Gy/s; n = 43) single fraction whole abdominal irradiation. Physical dose ranged from 12 to 16 Gy for FLASH and 11 to 15 Gy for CONV in 1 Gy increments. Four days after irradiation, 9 jejunum cross-sections from each mouse were hematoxylin and eosin stained and digitized for histological analysis. CONV data set was randomly split into training (n = 33) and testing (n = 8) data sets. ResNet101-based DL models were retrained using the CONV training data set to estimate the dose based on histological features. The classical manual crypt counting (CC) approach was implemented for model comparison. Cross-section-wise mean squared error was computed to evaluate the dose estimation accuracy of both approaches. The validated DL model was applied to the FLASH data set to map the physical FLASH dose into the isoeffective dose. RESULTS: The DL model achieved a cross-section-wise mean squared error of 0.20 Gy2 on the CONV testing data set compared with 0.40 Gy2 of the CC approach. Isoeffective doses estimated by the DL model for FLASH doses of 12, 13, 14, 15, and 16 Gy were 12.19 ± 0.46, 12.54 ± 0.37, 12.69 ± 0.26, 12.84 ± 0.26, and 13.03 ± 0.28 Gy, respectively. CONCLUSIONS: Our proposed DL model achieved accurate CONV dose estimation. The DL model results indicate that in the physical dose range of 13 to 16 Gy, the biologic dose response of small intestinal tissue to FLASH irradiation is represented by a lower isoeffective dose compared with the physical dose. Our DL approach can be a tool for studying isoeffective doses of other radiation dose modifying interventions.

4.
Clin Lung Cancer ; 25(2): e92-e100.e4, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38065707

RESUMO

PURPOSE/OBJECTIVES: Adoption of hypofractionated accelerated radiation therapy (HART) with concurrent chemotherapy has been limited by toxicity concerns. We aimed to describe outcomes of patients treated with HART and concurrent chemotherapy and to evaluate dosimetry to organs at risk to guide patient selection. MATERIALS/METHODS: We evaluated a retrospective cohort of NSCLC patients treated with concurrent chemotherapy with HART (>2.2 Gy per fraction) or standard fractionated radiation therapy (SFRT; 2-2.2 Gy fractions). Dosimetric parameters to key organs at risk were compared, and toxicity, patterns of recurrence and survival were calculated for the cohorts. RESULTS: Fifty-three patients treated with HART were compared with 100 patients treated with SFRT. Median dose per fraction for the HART cohort was 2.75 Gy (range 2.4-3 Gy). HART patients had significantly lower doses to the lung, heart, and esophagus due to patient selection. The HART group and had rates of grade 2+ pneumonitis (9.4 vs. 19%, P = .16) and grade 2+ esophagitis (20.8 vs. 45%, P < .01) that compared favorably to SFRT. Cumulative incidence of in-field recurrence trended lower in the HART cohort (7.6% vs. 23.1%, P = .058). Among the HART group, 88.7% (47/53) met the newly proposed lung constraints based on the degree of hypofractionation CONCLUSION: In select patients with favorable dosimetry to organs at risk, definitive HART with concurrent chemotherapy achieved excellent local control with low toxicity. These results are being used to inform a prospective study on the safety and efficacy of HART with concurrent chemotherapy for select NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Hipofracionamento da Dose de Radiação , Estudos Retrospectivos , Estudos Prospectivos , Seleção de Pacientes
6.
Ann Surg Oncol ; 31(1): 413-420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37755563

RESUMO

BACKGROUND: Improved treatment strategies are needed for patients with locally advanced gastric cancer with poor response to neoadjuvant chemotherapy. We aimed to describe patterns of failure for patients with no or partial response (NR, PR) to preoperative chemotherapy. PATIENTS AND METHODS: We analyzed patients with locally advanced gastric cancer treated from 2008 to 2022 with preoperative chemotherapy followed by surgery with D2 resection. We excluded patients who received radiation. Cumulative incidence of locoregional failure (LRF) and distant metastases (DM) were calculated. For patients with recurrent abdominal disease, hypothetical radiation clinical treatment volumes (CTV) were contoured on postoperative scans and compared with patterns of recurrence. RESULTS: A total of 60 patients were identified. The most used preoperative chemotherapy was FLOT (38.6%), followed by FOLFOX (30%) and ECF/ECX/EOX (23.3%). Four (6.7%), 40 (66.7%), and 9 patients (15%) had a complete pathologic response (CR), PR, and NR to neoadjuvant therapy, respectively. Among patients without a CR, 3-year overall and progression-free survival rates were 62.3% (95% CI 48-76.6%) and 51.3% (95% CI 36.9-65.7%), respectively. Three-year cumulative incidence of LRF and DM were 8.4% (95% CI 0.4-16.4%) and 41.0% (95% CI 26.3-55.4%), respectively. Absolute rates of patients having the first site of recurrence encompassed by a postoperative radiation CTV was 2.0% for patients without a CR and 0% for patients with NR. CONCLUSIONS: Patients with locally advanced gastric cancer with less than a CR to chemotherapy have poor outcomes due to high rates of DM. Adjuvant locoregional therapy such as radiation is unlikely to affect survival.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Radioterapia Adjuvante , Quimioterapia Adjuvante , Estadiamento de Neoplasias
7.
ArXiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808098

RESUMO

We conducted a multi-institutional audit of dosimetric variability between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3D-printed mouse phantom. A CT scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene ($~1.02 g/cm^3$) and polylactic acid ($~1.24 g/cm^3$) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid ($~0.64 g/cm^3$). Hounsfield units (HU) and densities were compared with the reference CT scan of the live mouse. Print-to-print reproducibility of the phantom was assessed. Three institutions were each provided a phantom, and each institution performed two replicates of irradiations at selected mouse anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. Compared to the reference CT scan, CT scans of the phantom demonstrated mass density differences of $0.10 g/cm^3$ for bone, $0.12 g/cm^3$ for lung, and $0.03 g/cm^3$ for soft tissue regions. Between phantoms, the difference in HU for soft tissue and bone was <10 HU from print to print. Lung exhibited the most variation (54 HU) but minimally affected dose distribution (<0.5% dose differences between phantoms). The mean difference between FLASH and CONV from the first replicate to the second decreased from 4.3% to 1.2%, and the mean difference from the prescribed dose decreased from 3.6% to 2.5% for CONV and 6.4% to 2.7% for FLASH. The framework presented here is promising for credentialing of multi-institutional studies of FLASH preclinical research to maximize the reproducibility of biological findings.

8.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874173

RESUMO

Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.


Assuntos
Técnicas de Cultura de Células , Intestinos , Humanos , Camundongos , Animais
9.
Radiother Oncol ; 188: 109906, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690668

RESUMO

BACKGROUND AND PURPOSE: The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS: We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS: Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION: Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

10.
Cancers (Basel) ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444468

RESUMO

Despite radiation therapy (RT) and surgery being the curative treatments, prior work demonstrated that the aggregated Asian American (AA) and Native Hawaiian and Other Pacific Islanders (NHPI) population refuse RT and surgery at a higher rates than other races. Given that AA and NHPI are distinct groups, data disaggregation is necessary to understand racial and ethnic disparities for treatment refusal. We aimed to (1) compare RT and surgery refusal rates between AA and NHPI populations, (2) assess RT and surgery refusal on overall mortality, and (3) determine predictors of refusing RT and surgery using the United States (U.S.) National Cancer Database. Adjusted odds ratios (aOR) and 95% confidence intervals (95%CI) for treatment refusal were calculated using logistic regression. Adjusted hazard ratios (aHR) were calculated for overall survival using Cox proportional hazard models among propensity score-matched groups. The overall rate of RT refusal was 4.8% and surgery refusal was 0.8%. Compared to East AA patients, NHPI patients had the highest risk of both RT refusal (aOR = 1.38, 95%CI = 1.21-1.61) and surgery refusal (aOR = 1.28, 95%CI = 1.00-1.61). RT refusal significantly predicted higher mortality (aHR = 1.17, 95%CI = 1.08-1.27), whereas surgery refusal did not. Predictors of RT and surgery refusal were older patient age, high comorbidity index, and cancer diagnosis between 2011-2017. The results show heterogenous treatment refusal patterns among AA and NHPI populations, suggesting areas for targeted intervention.

11.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034651

RESUMO

The molecular and cellular mechanisms driving the enhanced therapeutic ratio of ultra-high dose-rate radiotherapy (FLASH-RT) over slower conventional (CONV-RT) radiotherapy dose-rate remain to be elucidated. However, attenuated DNA damage and transient oxygen depletion are among several proposed models. Here, we tested whether FLASH-RT under physioxic (4% O 2 ) and hypoxic conditions (≤2% O 2 ) reduces genome-wide translocations relative to CONV-RT and whether any differences identified revert under normoxic (21% O 2 ) conditions. We employed high-throughput rejoin and genome-wide translocation sequencing ( HTGTS-JoinT-seq ), using S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs), to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated by electron beam CONV-RT (0.08-0.13Gy/s) and FLASH-RT (1×10 2 -5×10 6 Gy/s), under varying ionizing radiation (IR) doses and oxygen tensions. Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Thus, Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

12.
Int J Radiat Oncol Biol Phys ; 117(2): 482-492, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105403

RESUMO

PURPOSE: Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS: We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS: UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS: Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.


Assuntos
Elétrons , Neoplasias , Humanos , Radiometria/métodos , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
13.
J Thorac Oncol ; 18(7): 922-930, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37085030

RESUMO

INTRODUCTION: Severe pulmonary hemorrhage can occur in patients treated with thoracic stereotactic ablative radiotherapy (SABR) and vascular endothelial growth factor inhibitors (VEGFis). There is limited understanding of which patients are at risk for toxicity with the combination of thoracic SABR and VEGFis or how the risk differs over either therapy alone. METHODS: We evaluated a prospectively maintained cohort of 690 patients with 818 pulmonary tumors treated with highly conformal SABR. Rates of any-grade and grade 3 plus (G3+) pulmonary hemorrhage were compared between patients treated with or without VEGFi therapy across tumor locations. Outcomes were compared between patients treated with SABR plus VEGFi and a propensity-matched cohort of those treated with VEGFi therapy alone. RESULTS: Treatment with VEGFi plus SABR was associated with higher rates of G3+ pulmonary hemorrhage compared with those treated with SABR alone for the overall cohort (3-y incidence: 7.9% versus 0.6%, p < 0.01) and those with central tumors (19.1% versus 3.3%, p = 0.04). When further subdivided, there were significantly higher toxicity rates with VEGFi for the ultracentral (9.0% versus 45.0%, p = 0.044), but not central nonabutting tumors (0.0% versus 1.3%, p = 0.69). There was an increased incidence of G3+ hemorrhage in patients treated with VEGFi plus SABR compared with VEGFi alone (9.6% versus 1.3%, p = 0.04). CONCLUSIONS: The combination of VEGFi and SABR was associated with an increased risk of high-grade pulmonary hemorrhage over either therapy alone. Low rates of toxicity were observed when excluding patients with SABR to ultracentral tumors and applying highly conformal SABR techniques.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Pulmonares/patologia , Inibidores da Angiogênese/efeitos adversos , Fator A de Crescimento do Endotélio Vascular , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Hemorragia/epidemiologia , Hemorragia/etiologia
14.
Pract Radiat Oncol ; 13(4): e332-e335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868556

RESUMO

Workplace culture is often overlooked in interventions to improve the delivery of health care efficiency. Burnout and employee morale have been longstanding issues in health care and can negatively affect both provider and patient health. To address employee wellness and promote department unity, a culture committee was established within a radiation oncology department. After the emergence of the COVID-19 pandemic, burnout and social isolation among health care workers have increased substantially, affecting job performance and stress levels. This report revisits the efficacy of a workplace culture committee 5 years after its establishment, while also outlining its role during the pandemic and in the transition to a peripandemic workplace. The initiation of a culture committee has been pivotal to identifying and improving workplace stressors that may enable burnout. We suggest health care environments implement initiatives that encompass tangible and actionable solutions to feedback provided by employees.


Assuntos
Esgotamento Profissional , COVID-19 , Humanos , Condições de Trabalho , Pandemias/prevenção & controle , Local de Trabalho , Esgotamento Profissional/epidemiologia , Esgotamento Profissional/etiologia , Esgotamento Profissional/prevenção & controle
15.
Pract Radiat Oncol ; 13(2): e139-e148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868725

RESUMO

PURPOSE: Although arterial phase enhancement is commonly used to evaluate treatment response for hepatocellular carcinoma, it may not accurately describe response for lesions treated with stereotactic body radiation therapy (SBRT). We aimed to describe the post-SBRT imaging findings to better inform the optimal timing of salvage therapy after SBRT. METHODS AND MATERIALS: We retrospectively reviewed patients with hepatocellular carcinoma treated with SBRT from 2006 to 2021 at a single institution with available imaging showing lesions with characteristic arterial enhancement and portal venous washout. Patients were then stratified into 3 groups based on treatment: (1) concurrent SBRT and transarterial chemoembolization, (2) SBRT only, and (3) SBRT followed by early salvage therapy due to persistent enhancement. Overall survival was analyzed with the Kaplan-Meier method, and cumulative incidences were calculated with competing risk analysis. RESULTS: We included 82 lesions in 73 patients. The median follow-up time was 22.3 months (range, 2.2-88.1 months). The median time to overall survival was 43.7 months (95% confidence interval, 28.1-57.6 months) and median progression-free survival was 10.5 months (95% confidence interval, 7.2-14.0 months). There were 10 (12.2%) lesions that experienced local progression and there was no difference in rates of local progression between the 3 groups (P = .32). In the SBRT-only group, the median time to resolution of arterial enhancement and washout was 5.3 months (range, 1.6-23.7 months). At 3, 6, 9, and 12 months, 82%, 41%, 13%, and 8% of lesions, respectively, continued to show arterial hyperenhancement. CONCLUSIONS: Tumors treated with SBRT may continue to exhibit persistence of arterial hyperenhancement. Without an increase in size of enhancement, continued surveillance may be appropriate for these patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Radiocirurgia , Humanos , Estudos Retrospectivos
16.
Int J Radiat Oncol Biol Phys ; 116(1): 96-102, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764491

RESUMO

PURPOSE: Radiation therapy (RT) refusal by patients with cancer is infrequent but is significant because it portends poor outcomes. No prior study has evaluated all five federally defined racial categories with respects to RT refusal. Here we use a large nationally representative population with cancer to determine: 1) which race of patients refuse RT the most and 2) predictive factors for RT refusal by race. MATERIALS/METHODS: A retrospective study included patients ≥18 years old with diagnostically confirmed cancer between 2004-2017, using the National Cancer Database. All patients included were offered RT for first course treatment. Multivariable logistic regression assessed RT refusal (adjusted odds ratio [aOR]) with 95% confidence intervals (95%CI). Analyses were adjusted for patient factors (age, rurality, income, education, and comorbidities) and cancer characteristics (stage, cancer type, facility type, year of diagnosis, and region). Median overall survival was calculated using the Kaplan-Meier method. RESULTS: Of 11,609,044 patients, 2,759,753 patients were included and recommended for RT by the treating physician. Median follow-up was 50 months. RT was refused by 139,383 patients (5.0%), varying by race: 416 NHPI (7.2%), 489 AIAN (5.8%), 118,186 Non-Hispanic White (5.0%), 17,427 Black (4.8%), and 2,865 Asian (4.8%) patients. The rates of annual RT refusal were increasing, especially among NHPI patients. The populations with the highest likelihood of refusing RT were NHPI (aOR=1.53, 95%CI=1.36-1.71), AIAN (aOR=1.24, 95%CI=1.12-1.37), and Black (aOR=1.11, 95%CI=1.09-1.14) patients, compared to Non-Hispanic White patients. Older age and higher comorbidity burden predicted RT refusal across all races. Median overall survival was 81 months and 144 months for patients who refused RT and received RT, respectively. CONCLUSIONS: Indigenous and Black patients are more likely to refuse RT, which may contribute to inferior cancer outcomes. Understanding NHPI and AIAN patient perspectives and perceptions may elucidate interventions to mitigate these disparities.


Assuntos
Neoplasias , Humanos , Adolescente , Estudos Retrospectivos , Neoplasias/radioterapia , Renda , Recusa do Paciente ao Tratamento
17.
Pract Radiat Oncol ; 13(1): e35-e44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35858658

RESUMO

PURPOSE: Stereotactic ablative radiation therapy (SABR) results in high rates of primary tumor control for early-stage non-small cell lung cancer (NSCLC). For patients with isolated hilar or mediastinal nodal recurrence (INR) after SABR, the optimal salvage treatment strategy is unclear. The purpose of this study was to determine the rate of INR after SABR for early-stage NSCLC and to describe patterns of care and treatment outcomes after salvage therapy. METHODS AND MATERIALS: This retrospective cohort study included 342 patients with stage T1-3N0M0 NSCLC treated with definitive SABR from 2003 to 2018. We evaluated the incidence of INR and baseline factors between patients who did and did not experience INR. Among patients who experienced INR, we described treatment patterns and outcomes including overall survival (OS) and progression free survival (PFS) from the time of nodal failure using the Kaplan-Meier method. RESULTS: With a median follow-up of 3.3 years, the 3-year INR rate was 10.6% (95% CI, 6.6%-13.4%). Among the 34 patients experiencing INR, the 3-year rates of OS and PFS were 39.3% (24.4%-63.3%) and 26.7% (14.1%-0.3%), respectively. The 34 patients with INR were treated with radiation therapy alone (26.7%), concurrent chemoradiation therapy (43.3%), chemotherapy alone (13.3%), or observation (16.7%). Patients treated with concurrent chemoradiation therapy had the best survival outcomes, with a 3-year OS and PFS of 81.5% (61.1%-100.0%) and 63.9% (40.7%-100.0%), respectively. Of the patients treated with salvage radiation therapy or concurrent chemoradiation therapy, 14.3% experienced grade 3 toxic effects, and no patients had grade ≥4 toxic effects. CONCLUSIONS: In this study, INR occurred in approximately 10% of patients treated with SABR for early-stage NSCLC. The highest rates of OS and PFS among patients with INR were observed in those treated with salvage chemoradiation therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/patologia , Resultado do Tratamento , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estadiamento de Neoplasias
18.
Radiother Oncol ; 175: 203-209, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030934

RESUMO

BACKGROUND AND PURPOSE: We describe a multicenter cross validation of ultra-high dose rate (UHDR) (>= 40 Gy/s) irradiation in order to bring a dosimetric consensus in absorbed dose to water. UHDR refers to dose rates over 100-1000 times those of conventional clinical beams. UHDR irradiations have been a topic of intense investigation as they have been reported to induce the FLASH effect in which normal tissues exhibit reduced toxicity relative to conventional dose rates. The need to establish optimal beam parameters capable of achieving the in vivo FLASH effect has become paramount. It is therefore necessary to validate and replicate dosimetry across multiple sites conducting UHDR studies with distinct beam configurations and experimental set-ups. MATERIALS AND METHODS: Using a custom cuboid phantom with a cylindrical cavity (5 mm diameter by 10.4 mm length) designed to contain three type of dosimeters (thermoluminescent dosimeters (TLDs), alanine pellets, and Gafchromic films), irradiations were conducted at expected doses of 7.5 to 16 Gy delivered at UHDR or conventional dose rates using various electron beams at the Radiation Oncology Departments of the CHUV in Lausanne, Switzerland and Stanford University, CA. RESULTS: Data obtained between replicate experiments for all dosimeters were in excellent agreement (±3%). In general, films and TLDs were in closer agreement with each other, while alanine provided the closest match between the expected and measured dose, with certain caveats related to absolute reference dose. CONCLUSION: In conclusion, successful cross-validation of different electron beams operating under different energies and configurations lays the foundation for establishing dosimetric consensus for UHDR irradiation studies, and, if widely implemented, decrease uncertainty between different sites investigating the mechanistic basis of the FLASH effect.


Assuntos
Elétrons , Radiometria , Humanos , Imagens de Fantasmas , Água , Alanina
19.
Radiother Oncol ; 176: 239-243, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964762

RESUMO

The rapid depletion of oxygen during irradiation at ultra-high dose rate calls for tissue oximeters capable of high temporal resolution. This study demonstrates a water-soluble phosphorescent nanoprobe and fiber-coupled instrument, which together are used to measure the kinetics of oxygen depletion at 200 Hz during irradiation of in vitro solutions.


Assuntos
Oximetria , Oxigênio , Humanos , Dosagem Radioterapêutica , Radioterapia
20.
Clin Lung Cancer ; 23(3): 282-289, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246393

RESUMO

INTRODUCTION/BACKGROUND: Differentiating local recurrence (LR) from post-treatment changes following stereotactic ablative radiotherapy (SABR) for thoracic tumors is challenging. We sought to evaluate the performance of FDG-PET-CT in distinguishing recurrence from post-radiation changes in patients with stage I-II non-small cell lung cancer (NSCLC) treated with SABR. MATERIALS AND METHODS: We performed a retrospective review of patients with stage I-II NSCLC treated with SABR and subsequently followed with surveillance FDG-PET-CT scans from 2004 to 2014. The radiology reports were coded as 0 or 1 if minimally or substantially concerning for LR, respectively, and correlated with outcome. Prognostic factors for false-positive FDG-PET-CT were assessed using logistic regression models. RESULTS: We identified 145 patients meeting inclusion criteria for the retrospective analysis. Amongst the 39 (26.9%) patients with FDG-PET-CT scans concerning for LR 3 to 24 months after treatment, 14 were confirmed to have LR. Thus, the positive predictive value (PPV) of FDG-PET-CT in identifying LR was 36% (14/39). Factors associated with a false-positive scan included concerning FDG-PET-CT at the earliest post-treatment time point (3 months) (odds ratio 0.67, P= .04) and older age (odds ratio 2.3, P= .02). CONCLUSION: Our analysis indicates that the PPV of a concerning FDG-PET-CT after SABR for early-stage NSCLC is relatively low, especially at early post-treatment timepoints, but accuracy is improving over time with institutional experience.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...