Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 18(1): 19, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514393

RESUMO

BACKGROUND: Wearable ankle robotics could potentially facilitate intensive repetitive task-specific gait training on stair environment for stroke rehabilitation. A lightweight (0.5 kg) and portable exoskeleton ankle robot was designed to facilitate over-ground and stair training either providing active assistance to move paretic ankle augmenting residual motor function (power-assisted ankle robot, PAAR), or passively support dropped foot by lock/release ankle joint for foot clearance in swing phase (swing-controlled ankle robot, SCAR). In this two-center randomized controlled trial, we hypothesized that conventional training integrated with robot-assisted gait training using either PAAR or SCAR in stair environment are more effective to enhance gait recovery and promote independency in early stroke, than conventional training alone. METHODS: Sub-acute stroke survivors (within 2 months after stroke onset) received conventional training integrated with 20-session robot-assisted training (at least twice weekly, 30-min per session) on over-ground and stair environments, wearing PAAR (n = 14) or SCAR (n = 16), as compared to control group receiving conventional training only (CT, n = 17). Clinical assessments were performed before and after the 20-session intervention, including functional ambulatory category as primary outcome measure, along with Berg balance scale and timed 10-m walk test. RESULTS: After the 20-session interventions, all three groups showed statistically significant and clinically meaningful within-group functional improvement in all outcome measures (p < 0.005). Between-group comparison showed SCAR had greater improvement in functional ambulatory category (mean difference + 0.6, medium effect size 0.610) with more than 56% independent walkers after training, as compared to only 29% for CT. Analysis of covariance results showed PAAR had greater improvement in walking speed than SCAR (mean difference + 0.15 m/s, large effect size 0.752), which was in line with the higher cadence and speed when wearing the robot during the 20-session robot-assisted training over-ground and on stairs. CONCLUSIONS: Robot-assisted stair training would lead to greater functional improvement in gait independency and walking speed than conventional training in usual care. The active powered ankle assistance might facilitate users to walk more and faster with their paretic leg during stair and over-ground walking. TRIAL REGISTRATION: ClinicalTrials.gov NCT03184259. Registered on 12 June 2017.


Assuntos
Exoesqueleto Energizado , Recuperação de Função Fisiológica , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Adulto , Idoso , Articulação do Tornozelo/fisiopatologia , Feminino , Transtornos Neurológicos da Marcha/reabilitação , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos
2.
Front Hum Neurosci ; 14: 611064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551777

RESUMO

Hand function improvement in stroke survivors in the chronic stage usually plateaus by 6 months. Brain-computer interface (BCI)-guided robot-assisted training has been shown to be effective for facilitating upper-limb motor function recovery in chronic stroke. However, the underlying neuroplasticity change is not well understood. This study aimed to investigate the whole-brain neuroplasticity changes after 20-session BCI-guided robot hand training, and whether the changes could be maintained at the 6-month follow-up. Therefore, the clinical improvement and the neurological changes before, immediately after, and 6 months after training were explored in 14 chronic stroke subjects. The upper-limb motor function was assessed by Action Research Arm Test (ARAT) and Fugl-Meyer Assessment for Upper-Limb (FMA), and the neurological changes were assessed using resting-state functional magnetic resonance imaging. Repeated-measure ANOVAs indicated that long-term motor improvement was found by both FMA (F[2,26] = 6.367, p = 0.006) and ARAT (F[2,26] = 7.230, p = 0.003). Seed-based functional connectivity analysis exhibited that significantly modulated FC was observed between ipsilesional motor regions (primary motor cortex and supplementary motor area) and contralesional areas (supplementary motor area, premotor cortex, and superior parietal lobule), and the effects were sustained after 6 months. The fALFF analysis showed that local neuronal activities significantly increased in central, frontal and parietal regions, and the effects were also sustained after 6 months. Consistent results in FC and fALFF analyses demonstrated the increase of neural activities in sensorimotor and fronto-parietal regions, which were highly involved in the BCI-guided training. Clinical Trial Registration: This study has been registered at ClinicalTrials.gov with clinical trial registration number NCT02323061.

3.
IEEE Int Conf Rehabil Robot ; 2017: 801-805, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813918

RESUMO

Functional Electrical Stimulation (FES) cycling could benefit people with Spinal Cord Injury (SCI). The FES cycling involves large muscle groups during the training, and thus improves the cardiovascular function, increases the muscle bulk and reduces the secondary complications. This study developed an outdoor FES exercise cycling system for complete SCI persons to exercise their lower limbs without putting extra load on upper extremities. The mechanical structure of the cycling system was specially redesigned to secure the SCI persons in the cycling system. A six-phase-angle-driven control algorithm was designed to stimulate the quadriceps and hamstrings muscles. Two training modes, i.e., continuous mode and on-off mode, were designed and tested to increase the duration of the electrical stimulation to reduce muscle fatigue. A complete SCI volunteer participated in this training for six months. Beneficial effects could be observed such as paralyzed lower limb muscles had regained the muscle mass and reduced edema from the improved blood circulation. Moreover, the SCI volunteer attended the Cybathlon FES-bike competition in Zurich in October 2016 with Team Phoenix from the CUHK.


Assuntos
Ciclismo , Terapia por Estimulação Elétrica , Extremidade Inferior/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Adulto , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Eletrodos , Feminino , Humanos , Músculo Esquelético/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...