Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6563, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095367

RESUMO

Equitable and accessible education in life sciences, bioengineering, and synthetic biology is crucial for training the next generation of scientists, fostering transparency in public decision-making, and ensuring biotechnology can benefit a wide-ranging population. As a groundbreaking technology for genome engineering, CRISPR has transformed research and therapeutics. However, hands-on exposure to this technology in educational settings remains limited due to the extensive resources required for CRISPR experiments. Here, we develop CRISPRkit, an affordable kit designed for gene editing and regulation in high school education. CRISPRkit eliminates the need for specialized equipment, prioritizes biosafety, and utilizes cost-effective reagents. By integrating CRISPRi gene regulation, colorful chromoproteins, cell-free transcription-translation systems, smartphone-based quantification, and an in-house automated algorithm (CRISPectra), our kit offers an inexpensive (~$2) and user-friendly approach to performing and analyzing CRISPR experiments, without the need for a traditional laboratory setup. Experiments conducted by high school students in classroom settings highlight the kit's utility for reliable CRISPRkit experiments. Furthermore, CRISPRkit provides a modular and expandable platform for genome engineering, and we demonstrate its applications for controlling fluorescent proteins and metabolic pathways such as melanin production. We envision CRISPRkit will facilitate biotechnology education for communities of diverse socioeconomic and geographic backgrounds.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Biologia Sintética , Edição de Genes/métodos , Biologia Sintética/métodos , Humanos , Estudantes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Instituições Acadêmicas
2.
Nat Commun ; 10(1): 194, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643127

RESUMO

Repurposed CRISPR-Cas molecules provide a useful tool set for broad applications of genomic editing and regulation of gene expression in prokaryotes and eukaryotes. Recent discovery of phage-derived proteins, anti-CRISPRs, which serve to abrogate natural CRISPR anti-phage activity, potentially expands the ability to build synthetic CRISPR-mediated circuits. Here, we characterize a panel of anti-CRISPR molecules for expanded applications to counteract CRISPR-mediated gene activation and repression of reporter and endogenous genes in various cell types. We demonstrate that cells pre-engineered with anti-CRISPR molecules become resistant to gene editing, thus providing a means to generate "write-protected" cells that prevent future gene editing. We further show that anti-CRISPRs can be used to control CRISPR-based gene regulation circuits, including implementation of a pulse generator circuit in mammalian cells. Our work suggests that anti-CRISPR proteins should serve as widely applicable tools for synthetic systems regulating the behavior of eukaryotic cells.


Assuntos
Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Redes Reguladoras de Genes/genética , Técnicas de Cultura de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células Eucarióticas , Vetores Genéticos/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Microscopia Intravital/métodos , Lentivirus/genética , Microscopia de Fluorescência/métodos , Imagem com Lapso de Tempo/métodos , Transdução Genética/métodos , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA