Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6226, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711821

RESUMO

The bulk morphology of the active layer of organic solar cells (OSCs) is known to be crucial to the device performance. The thin film device structure breaks the symmetry into the in-plane direction and out-of-plane direction with respect to the substrate, leading to an intrinsic anisotropy in the bulk morphology. However, the characterization of out-of-plane nanomorphology within the active layer remains a grand challenge. Here, we utilized an X-ray scattering technique, Grazing-incident Transmission Small-angle X-ray Scattering (GTSAXS), to uncover this new morphology dimension. This technique was implemented on the model systems based on fullerene derivative (P3HT:PC71BM) and non-fullerene systems (PBDBT:ITIC, PM6:Y6), which demonstrated the successful extraction of the quantitative out-of-plane acceptor domain size of OSC systems. The detected in-plane and out-of-plane domain sizes show strong correlations with the device performance, particularly in terms of exciton dissociation and charge transfer. With the help of GTSAXS, one could obtain a more fundamental perception about the three-dimensional nanomorphology and new angles for morphology control strategies towards highly efficient photovoltaic devices.

2.
Nat Commun ; 12(1): 3049, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031410

RESUMO

Photo-degradation of organic semiconductors remains as an obstacle preventing their durable practice in optoelectronics. Herein, we disclose that volume-conserving photoisomerization of a unique series of acceptor-donor-acceptor (A-D-A) non-fullerene acceptors (NFAs) acts as a surrogate towards their subsequent photochemical reaction. Among A-D-A NFAs with fused, semi-fused and non-fused backbones, fully non-fused PTIC, representing one of rare existing samples, exhibits not only excellent photochemical tolerance in aerobic condition, but also efficient performance in solar cells. Along with a series of in-depth investigations, we identify that the structural confinement to inhibit photoisomerization of these unique A-D-A NFAs from molecular level to macroscopic condensed solid helps enhancing the photochemical stabilities of molecules, as well as the corresponding OSCs. Although other reasons associating with the photostabilities of molecules and devices should not excluded, we believe this work provides helpful structure-property information toward new design of stable and efficient photovoltaic molecules and solar cells.

3.
ACS Appl Mater Interfaces ; 12(23): 25843-25852, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32419443

RESUMO

Developing scalable and robust processing methods with low material waste remains a challenge for organic solar cells (OSCs) to become a practical renewable energy source. Here, we present a novel low-cost processing approach termed as soft porous blade printing (SPBP), which uses a layer of soft porous material such as filter paper as the printing blade. The inherent porous microstructure of the blade offers high shear rates that facilitate the alignment, crystallization, and orientation of active materials during printing. Moreover, by eliminating the suspended liquid meniscus, SPBP relaxes the stringent requirement of gap control and enables continuous ink delivery for uninterrupted film fabrication with adjustable thickness. Higher photovoltaic performances are achieved in the SPBP-printed OSCs than those of the spin-coated counterparts for two nonfullerene-acceptor active-layer systems (Y6:PM6 and PTQ10:IDIC). Y6:PM6 cells printed by SPBP without any additive exhibit power conversion efficiencies up to 14.75%, which is among the highest reported to date for non-spin-coated OSCs.

4.
Adv Mater ; 32(24): e2001160, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32390241

RESUMO

Low energy loss and efficient charge separation under small driving forces are the prerequisites for realizing high power conversion efficiency (PCE) in organic photovoltaics (OPVs). Here, a new molecular design of nonfullerene acceptors (NFAs) is proposed to address above two issues simultaneously by introducing asymmetric terminals. Two NFAs, BTP-S1 and BTP-S2, are constructed by introducing halogenated indandione (A1 ) and 3-dicyanomethylene-1-indanone (A2 ) as two different conjugated terminals on the central fused core (D), wherein they share the same backbone as well-known NFA Y6, but at different terminals. Such asymmetric NFAs with A1 -D-A2 structure exhibit superior photovoltaic properties when blended with polymer donor PM6. Energy loss analysis reveals that asymmetric molecule BTP-S2 with six chlorine atoms attached at the terminals enables the corresponding devices to give an outstanding electroluminescence quantum efficiency of 2.3 × 10-2 %, one order of magnitude higher than devices based on symmetric Y6 (4.4 × 10-3 %), thus significantly lowering the nonradiative loss and energy loss of the corresponding devices. Besides, asymmetric BTP-S1 and BTP-S2 with multiple halogen atoms at the terminals exhibit fast hole transfer to the donor PM6. As a result, OPVs based on the PM6:BTP-S2 blend realize a PCE of 16.37%, higher than that (15.79%) of PM6:Y6-based OPVs. A further optimization of the ternary blend (PM6:Y6:BTP-S2) results in a best PCE of 17.43%, which is among the highest efficiencies for single-junction OPVs. This work provides an effective approach to simultaneously lower the energy loss and promote the charge separation of OPVs by molecular design strategy.

5.
Adv Mater ; 31(25): e1901284, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31038236

RESUMO

Mixed perovskites have achieved substantial successes in boosting solar cell efficiency, but the complicated perovskite crystal formation pathway remains mysterious. Here, the detailed crystallization process of mixed perovskites (FA0.83 MA0.17 Pb(I0.83 Br0.17 )3 ) during spin-coating is revealed by in situ grazing-incidence wide-angle X-ray scattering measurements, and three phase-formation stages are identified: I) precursor solution; II) hexagonal δ-phase (2H); and III) complex phases including hexagonal polytypes (4H, 6H), MAI-PbI2 -DMSO intermediate phases, and perovskite α-phase. The correlated device performance and ex situ characterizations suggest the existence of an "annealing window" covering the duration of stage II. The spin-coated film should be annealed within the annealing window to avoid the formation of hexagonal polytypes during the perovskite crystallization process, thus achieving a good device performance. Remarkably, the crystallization pathway can be manipulated by incorporating Cs+ ions in mixed perovskites. Combined with density functional theory calculations, the perovskite system with sufficient Cs+ will bypass the formation of secondary phases in stage III by promoting the formation of α-phase both kinetically and thermodynamically, thereby significantly extending the annealing window. This study provides underlying reasons of the time sensitivity of fabricating mixed-perovskite devices and insightful guidelines for manipulating the perovskite crystallization pathways toward higher performance.

6.
Nat Commun ; 10(1): 2152, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089140

RESUMO

The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.

7.
Adv Mater ; 31(17): e1807577, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30883937

RESUMO

Narrow bandgap n-type organic semiconductors (n-OS) have attracted great attention in recent years as acceptors in organic solar cells (OSCs), due to their easily tuned absorption and electronic energy levels in comparison with fullerene acceptors. Herein, a new n-OS acceptor, Y5, with an electron-deficient-core-based fused structure is designed and synthesized, which exhibits a strong absorption in the 600-900 nm region with an extinction coefficient of 1.24 × 105 cm-1 , and an electron mobility of 2.11 × 10-4 cm2 V-1 s-1 . By blending Y5 with three types of common medium-bandgap polymers (J61, PBDB-T, and TTFQx-T1) as donors, all devices exhibit high short-circuit current densities over 20 mA cm-2 . As a result, the power conversion efficiency of the Y5-based OSCs with J61, TTFQx-T1, and PBDB-T reaches 11.0%, 13.1%, and 14.1%, respectively. This indicates that Y5 is a universal and highly efficient n-OS acceptor for applications in organic solar cells.

8.
J Am Chem Soc ; 141(8): 3589-3596, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30698433

RESUMO

Herein we report the synthesis, crystal structures, and semiconductor properties of new derivatives of bisnaphtho[2',3':3,4]cyclobut[1,2- b:1',2'- i]anthracene (BNCBA). It is found that the π-π stacking of BNCBA in single crystals can be largely modified by alkyl substituting groups of different lengths. In particular, the tetrahexyl derivative exhibits π-π stacking with an unusual zigzag arrangement. The variation of molecular packing also leads to a change in charge transport characteristics as found from the theoretical calculation of mobility on the basis of single-crystal structures. All of these BNCBA derivatives function as p-type semiconductors in solution-processed thin film transistors, and the tetrahexyl derivative exhibits a field effect mobility as high as 2.9 cm2/(V s).

9.
ACS Appl Mater Interfaces ; 11(1): 1394-1401, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30516954

RESUMO

To further advance polymer solar cells requires the fast evolution of π-conjugated materials as well as a better understanding of their structure-property relationships. Herein, we present three copolymers (PT1, PT2, PT3) made through tuning π-bridges (without any group, thiophene, and 3-hexylthieno[3,2- b]thiophene) between electron-rich (D: BDTT) and -deficient (A: BDD) units. The comparative studies reveal the unique correlation that the tune of π-bridge on the polymeric backbone governs the solid stacking and photovoltaic properties of resultant poly(BDTT- alt-BDD)s, which provide an effective way to deliver new and efficient polymer with feasible processability. That is, polymers with either twist zigzag backbone (PT1) or with linear coplanar backbone (PT2) result in inferior photovoltaic performance upon simple solution casting. Among them, PT3 with extended zigzag backbone and planar segments exhibits suitable processability and retains good efficiency in nonfullerene solar cells through a single-solvent cast without involving tedious treatments. This work illustrates that the tuning of the D-π-A polymer backbone facilitates efficient materials with feasible processability, promising for scale-up fabrication.

10.
Adv Mater ; 30(52): e1803769, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30397928

RESUMO

Solar photon-to-electron conversion with polymer solar cells (PSCs) has experienced rapid development in the recent few years. Even so, the exploration of molecules and devices in efficiently converting near-infrared (NIR) photons into electrons remains critical, yet challenging. Herein presented is a family of near-infrared nonfullerene acceptors (NIR NFAs, T1-T4) with fluorinated regioisomeric A-Aπ-D-Aπ-A backbones for constructing efficient single-junction and tandem PSCs with photon response up to 1000 nm. It is found that the tuning of the regioisomeric bridge (Aπ) and fluoro (F)-substituents on a molecular skeleton strongly influences the backbone conformation and conjugation, leading to the optimized optoelectronic and stable stacking of resultant NFAs, which eventually impacts the performance of derived PSCs. In PSCs, the proximal NFAs with varied F-atoms (T1-T3) mostly outperform than that of distal NFA (T4). Notably, single-junction PSC with PTB7-Th:T2 blend can reach 10.87% power conversion efficiency (PCE), after implementing a solvent additive to improve blend morphology. Moreover, efficient tandem PSCs are fabricated through integrating such NIR cells with mediate bandgap nonfullerene-based subcells, to achieve a PCE of 14.64%. The results reveal the structural design of organic semiconductor and device with improved photovoltaic performance.

11.
ACS Appl Mater Interfaces ; 10(48): 41318-41325, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398050

RESUMO

Two conjugated polymers, with different side chains of alkoxy-substituted difluorobenzene and alkyl-substituted difluorobenzene based on quinoxaline (Qx) as the electron acceptor unit and benzodithiophene as the electron donor unit, named HFQx-T and HFAQx-T, were used as electron donor polymers to fabricate all-polymer solar cells (all-PSCs) with a naphthalenediimide-bithiophene n-type semiconducting polymer (N2200). Usually, halogenated solvents are harmful to natural environment and human beings, and solvent additives were disadvantageous in the process of roll-to-roll technology. The Qx-based polymers are successfully used to fabricate high-performance all-PSCs, which processed with the nonhalogenated solvent tetrahydrofuran (THF) at room temperature. With THF as the processing solvent, the active layer showed a higher absorption coefficient, better phase separation, exciton dissociation, and charge carrier mobilities than that processed with CHCl3. Moreover, the photovoltaic properties have been dramatically improved with THF. The optimized device of HFAQx-T:N2200 processed with THF delivered an efficient power conversion efficiency (PCE) of 7.45%, which is the highest PCE for all-PSCs from Qx-based polymers processed by a nonhalogenated solvent.

12.
ACS Appl Mater Interfaces ; 10(49): 42444-42452, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444596

RESUMO

Insufficient driving forces defined as the energetic offsets of the frontier molecular orbitals between a donor and an acceptor influence the charge separation in organic solar cells (OSCs), thus restricting the improvement of quantum efficiencies. Herein, we demonstrate that enhancing charge transfer between fullerene and non-fullerene acceptors via ternary strategy is an effective method to address this problem. By introducing an electron acceptor [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the third component to the binary blends based on the polymer donor of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)-benzo[1,2- b:4,5- b']dithiophene))- alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'- c:4',5'- c']dithiophene-4,8-dione)] (PBDB-TF) and the small-molecule acceptor of 2,2'-((2 Z,2' Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4 H-cyclopenta[2,1- b:3,4- b']dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile (HF-PCIC) or 2,2'-((2 Z,2' Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4 H-cyclopenta[2,1- b:3,4- b']dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile (HC-PCIC) with unfused cores, the quantum efficiencies can be boosted from ∼70% for binary blends to over 80% for ternary blends in the longer wavelength ranges. PC71BM shows lower energy levels and higher electron mobility, benefiting the charge transfer and transport in ternary OSCs and resulting in an enhanced quantum efficiency. As a result, ternary OSCs based on PBDB-TF/HF-PCIC/PC71BM and PBDB-TF/HC-PCIC/PC71BM exhibit high power conversion efficiencies (PCEs) of 11.55 and 12.36%, respectively. In addition, excellent thermal stabilities are realized for both ternary OSCs, which retained ∼80% initial PCEs after thermal treatment at 130 °C for 12 h, indicating that the active layer morphology containing fullerene/non-fullerene acceptors is stabilized. This work demonstrates efficient and thermally stable ternary OSCs with enhanced charge transfer between fullerene and non-fullerene acceptors via the modulation of energy levels, which helps to better understand the working mechanism of ternary OSCs.

13.
ACS Appl Mater Interfaces ; 10(46): 39921-39932, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30353719

RESUMO

The crystallization of organic or perovskite semiconductors reflects the intermolecular interactions and crucially determines the charge transport in opto-electronic devices. In this report, we demonstrate and investigate the use of an ultrasonicated dispenser to guide the formation of crystals of organic and perovskite semiconductors. The moving speed of the dispenser affects the match between the concentration gradient and evaporation rate near the three-phase contact lines and thus the generation of various crystallization morphologies. The mechanism of crystallization is given by a relationship between the calculated concentration gradient profile and the degree of crystal alignment. Highly ordered, aligned crystals are achieved for both organic bis(triisopropylsilylethynyl)-pentacene and perovskite MAPbI3 semiconductors. Absorption spectra, Raman scattering spectroscopy analysis, and grazing incidence wide-angle X-ray scattering measurement reveal the strong anisotropy of the crystalline structures. The aligned crystals lead to remarkably enhanced electrical performances in an organic thin-film transistor (OTFT) and perovskite photodetector. As a demonstration, we combine the OTFT with photodetectors to achieve an active matrix of normally off, gate-tunable photodetectors that operate under ambient conditions.

14.
Adv Sci (Weinh) ; 5(8): 1800755, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128263

RESUMO

Herein, efficient organic solar cells (OSCs) are realized with the ternary blend of a medium band gap donor (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T)) with a low band gap acceptor (2,2'-((2Z,2'Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HF-PCIC)) and a near-infrared acceptor (2,2'-((2Z,2'Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO-4F)). It is shown that the introduction of IEICO-4F third component into PBDB-T:HF-PCIC blend increases the short-circuit current density (Jsc) of the ternary OSC to 23.46 mA cm-2, with a 44% increment over those of binary devices. The significant current improvement originates from the broadened absorption range and the active layer morphology optimization through the introduction of IEICO-4F component. Furthermore, the energy loss of the ternary cells (0.59 eV) is much decreased over that of the binary cells (0.80 eV) due to the reduction of both radiative recombination from the absorption below the band gap and nonradiative recombination upon the addition of IEICO-4F. Therefore, the power conversion efficiency increases dramatically from 8.82% for the binary cells to 11.20% for the ternary cells. This work provides good examples for simultaneously achieving both significant current enhancement and energy loss mitigation in OSCs, which would lead to the further construction of highly efficient ternary OSCs.

15.
Adv Mater ; 30(15): e1706571, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29512214

RESUMO

In order to utilize the near-infrared (NIR) solar photons like silicon-based solar cells, extensive research efforts have been devoted to the development of organic donor and acceptor materials with strong NIR absorption. However, single-junction organic solar cells (OSCs) with photoresponse extending into >1000 nm and power conversion efficiency (PCE) >11% have rarely been reported. Herein, three fused-ring electron acceptors with varying core size are reported. These three molecules exhibit strong absorption from 600 to 1000 nm and high electron mobility (>1 × 10-3 cm2 V-1 s-1 ). It is proposed that core engineering is a promising approach to elevate energy levels, enhance absorption and electron mobility, and finally achieve high device performance. This approach can maximize both short-circuit current density (  JSC ) and open-circuit voltage (VOC ) at the same time, differing from the commonly used end group engineering that is generally unable to realize simultaneous enhancement in both VOC and JSC . Finally, the single-junction OSCs based on these acceptors in combination with the widely polymer donor PTB7-Th yield JSC as high as 26.00 mA cm-2 and PCE as high as 12.3%.

16.
ACS Appl Mater Interfaces ; 10(11): 9587-9594, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29489322

RESUMO

Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC71BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

17.
ACS Appl Mater Interfaces ; 9(40): 35159-35168, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28944668

RESUMO

Ladder-type electron-donating units for D-A copolymers applied in polymer solar cells usually comprise multiple tetrahedral carbon bridges bonded with out-of-plane alkyl chains for desirable solubility for device processing. However, molecular packing of resultant copolymers in the solid state and charge transport within devices are also impeded in spite of with multiple fused aromatic backbones. To mitigate this issue, a structurally well-defined ladder-type electron-donating heteroheptacene, 12H-dithieno[2',3':4,5]thieno[3,2-b:2',3'-h]fluorene (DTTF) with an extended conjugated backbone and a single tetrahedral carbon bridge attached with two bulky alkyl chains was designed and synthesized. The copolymerization of DTTF with 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) afforded a soluble D-A copolymer (PDTTF-DTBT) with a medium optical band gap of 1.72 eV and low-lying HOMO level at -5.36 eV. PDTTF-DTBT unprecedentedly exhibits strong intermolecular stacking ability and presents preferential face-on orientation on both ZnO and PEDOT:PSS layers. The improved packing order and appropriate phase separation of both the copolymer and PC71BM in the bulk heterojunction blend on the ZnO layer over on the PEDOT:PSS layer lead to much improved power conversion efficiency of ∼8.2% in the inverted solar cell device, among the highest for reported ladder-type D-A copolymers. The research demonstrates that it is an effective method to incorporate a single tetrahedral carbon bridge to the molecular center of a ladder-type heteroacene with heavily extended π-conjugation to prepare D-A copolymers toward highly efficient PSCs.

18.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28608531

RESUMO

A fused hexacyclic electron acceptor, IHIC, based on strong electron-donating group dithienocyclopentathieno[3,2-b]thiophene flanked by strong electron-withdrawing group 1,1-dicyanomethylene-3-indanone, is designed, synthesized, and applied in semitransparent organic solar cells (ST-OSCs). IHIC exhibits strong near-infrared absorption with extinction coefficients of up to 1.6 × 105 m-1 cm-1 , a narrow optical bandgap of 1.38 eV, and a high electron mobility of 2.4 × 10-3 cm2 V-1 s-1 . The ST-OSCs based on blends of a narrow-bandgap polymer donor PTB7-Th and narrow-bandgap IHIC acceptor exhibit a champion power conversion efficiency of 9.77% with an average visible transmittance of 36% and excellent device stability; this efficiency is much higher than any single-junction and tandem ST-OSCs reported in the literature.

19.
Adv Mater ; 29(11)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28102611

RESUMO

A new, easy, and efficient approach is reported to enhance the driving force for charge transfer, break tradeoff between open-circuit voltage and short-circuit current, and simultaneously achieve very small energy loss (0.55 eV), very high open-circuit voltage (>1 V), and very high efficiency (>10%) in fullerene-free organic solar cells via an energy driver.

20.
J Am Chem Soc ; 139(3): 1336-1343, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28059503

RESUMO

We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 105 M-1 cm-1. Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...