Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 73: 100-106, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421979

RESUMO

BACKGROUND: The limitations of functional electrical stimulation (FES) cycling directly affect the health benefits acquired from this technology and prevents its' full potential to be realised. Experiments should be done on a test bed which can isolate and focus only on one muscle group, namely the quadriceps. The aim of this work was to design and develop an isokinetic robotic leg extension/flexion dynamometer which can mimic knee joint motion during actual cycling to be used for evaluation of novel functional electrical stimulation strategies. Although the main motivation for development of the dynamometer was for application in FES studies, it has the potential to be used for various different muscle physiology studies. METHODS: A feedback control system with integrated electrical stimulation for isokinetic knee joint torque measurement has been developed and tested for safety and functionality. The leg extension/flexion device was modified and equipped with a DC motor drive system to imitate isokinetic knee joint motion during cycling when the hip joint remains fixed. Real-time bi-directional effective torque on the lever arm was measured by a magnetostrictive torque sensor and a load cell. Closed-loop motor control system was also designed to mimic the cyclical motion at desired angular velocity. RESULTS: A functional model of the robotic dynamometer was developed and evaluated. The dynamometer is capable of simulating the knee angle during cycling at a cadence of up to 70 rpm with range of motion of 72∘. The magnetostrictive torque sensor can measure torque values up to 75 Nm. The lever arm can be adjusted and the target knee angle was controlled with RMSE tracking error of less than 2.1∘ in tests with and without a test person, and with and without muscle stimulation. CONCLUSIONS: The isokinetic knee joint torque measurement system was designed and validated in this work, and subsequently used to develop and evaluate novel muscle activation strategies. This is important for fundamental research on effective stimulation patterns and novel activation strategies. This will, in turn, enhance the efficiency of FES cycling exercise and has the potential to improve the health-beneficial effects.


Assuntos
Estimulação Elétrica , Desenho de Equipamento , Articulação do Joelho/fisiologia , Retroalimentação Fisiológica , Humanos , Cinética , Movimento
2.
J Neuroeng Rehabil ; 16(1): 5, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616683

RESUMO

BACKGROUND: During functional electrical stimulation (FES) tasks with able-bodied (AB) participants, spatially distributed sequential stimulation (SDSS) has demonstrated substantial improvements in power output and fatigue properties compared to conventional single electrode stimulation (SES). The aim of this study was to compare the properties of SDSS and SES in participants with spinal cord injury (SCI) in a dynamic isokinetic knee extension task simulating knee movement during recumbent cycling. METHOD: Using a case-series design, m. vastus lateralis and medialis of four participants with motor and sensory complete SCI (AIS A) were stimulated for 6 min on both legs with both electrode setups. With SES, target muscles were stimulated by a pair of electrodes. In SDSS, the distal electrodes were replaced by four small electrodes giving the same overall stimulation frequency and having the same total surface area. Torque was measured during knee extension by a dynamometer at an angular velocity of 110 deg/s. Mean power of the left and right sides (PmeanL,R) was calculated from all stimulated extensions for initial, final and all extensions. Fatigue is presented as an index value with respect to initial power from 1 to 0, whereby 1 means no fatigue. RESULTS: SDSS showed higher PmeanL,R values for all four participants for all extensions (increases of 132% in participant P1, 100% in P2, 36% in P3 and 18% in P4 compared to SES) and for the initial phase (increases of 84%, 59%, 66%, and 16%, respectively). Fatigue resistance was better with SDSS for P1, P2 and P4 but worse for P3 (0.47 vs 0.35, 0.63 vs 0.49, 0.90 vs 0.82 and 0.59 vs 0.77, respectively). CONCLUSION: Consistently higher PmeanL,R was observed for all four participants for initial and overall contractions using SDSS. This supports findings from previous studies with AB participants. Fatigue properties were better in three of the four participants. The lower fatigue resistance with SDSS in one participant may be explained by a very low muscle activation level in this case. Further investigation in a larger cohort is warranted.


Assuntos
Terapia por Estimulação Elétrica/métodos , Fadiga Muscular/fisiologia , Paralisia/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Eletrodos , Feminino , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Músculo Quadríceps/fisiopatologia , Adulto Jovem
3.
Eur J Appl Physiol ; 117(9): 1787-1798, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28674921

RESUMO

PURPOSE: The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS: M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P mean) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS: P mean was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p =  0.037). With SDSS, the reduction in P mean was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION: Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications.


Assuntos
Terapia por Estimulação Elétrica/métodos , Estimulação Elétrica/métodos , Joelho/fisiologia , Fadiga Muscular , Força Muscular , Adulto , Humanos , Masculino , Movimento , Contração Muscular , Músculo Esquelético/fisiologia , Distribuição Aleatória
4.
Eur J Transl Myol ; 27(4): 7086, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29299220

RESUMO

Functional electrical stimulation (FES) provides a good possibility to activate paralysed muscles and it has been shown to elicit substantial physiological and health benefits. For successful application of FES, a perfect symbiosis of the bike and the pilot has to be achieved. The road to the Cybathlon 2016 describes the different pieces needed for FES cycling in spinal cord injury. The systematic optimisation of the stimulation parameters and the Cybatrike, and sophisticated training contributed to the team's success as the fastest surface-electrode team in the competition.

5.
Eur J Transl Myol ; 26(3): 6160, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27990242

RESUMO

Recumbent cycling exercise achieved by functional electrical stimulation (FES) of the paralyzed leg muscles is effective for cardiopulmonary and musculoskeletal conditioning after spinal cord injury, but its full potential has not yet been realized. Mechanical power output and efficiency is very low and endurance is limited due to early onset of muscle fatigue. The aim of this work was to compare stochastic modulation of the inter-pulse interval (IPI) to constant-frequency stimulation during an isokinetic leg extension task similar to FES-cycling. Seven able-bodied subjects participated: both quadriceps muscles were stimulated (n = 14) with two activation patterns (P1-constant frequency, P2-stochastic IPI). There was significantly higher power output with P2 during the first 30 s (p = 0.0092), the last 30 s (p = 0.018) and overall (p = 0.0057), but there was no overall effect on fatiguability when stimulation frequency was randomly modulated.

6.
Eur J Transl Myol ; 26(2): 6016, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27478563

RESUMO

Spatially distributed sequential stimulation (SDSS) has demonstrated substantial power output and fatigue benefits compared to single electrode stimulation (SES) in the application of functional electrical stimulation (FES). This asymmetric electrode setup brings new possibilities but also new questions since precise placement of the electrodes is one critical factor for good muscle activation. The aim of this study was to compare the power output, fatigue and activation properties of proximally versus distally placed SDSS electrodes in an isokinetic knee extension task simulating knee movement during recumbent cycling. M. vastus lateralis and medialis of seven able-bodied subjects were stimulated with rectangular bi-phasic pulses of constant amplitude of 40 mA and at an SDSS frequency of 35 Hz for 6 min on both legs with both setups (i.e. n=14). Torque was measured during knee-extension movement by a dynamometer at an angular velocity of 110 deg/s. Mean power, peak power and activation time were calculated and compared for the initial and final stimulation phases, together with an overall fatigue index. Power output values (Pmean, Ppeak) were scaled to a standardised reference input pulse width of 100 µs (Pmean,s, Ppeak,s). The initial evaluation phase showed no significant differences between the two setups for all outcome measures. Ppeak and Ppeak,s were both significantly higher in the final phase for the distal setup (25.4 ± 8.1 W vs. 28.2 ± 6.2 W, p=0.0062 and 34.8 ± 9.5 W vs. 38.9 ± 6.7 W, p=0.021, respectively). With distal SDSS, there was modest evidence of higher Pmean and Pmean,s (p=0.071, p=0.14, respectively) but of longer activation time (p=0.096). The rate of fatigue was similar for both setups. For practical FES applications, distal placement of the SDSS electrodes is preferable.

7.
Biomed Eng Online ; 14: 104, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26555762

RESUMO

BACKGROUND: The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill. METHODS: 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data. RESULTS: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability. CONCLUSIONS: It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill, but there were high correlations between the RATT vs the cycle ergometer and vs the treadmill. Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.


Assuntos
Teste de Esforço/instrumentação , Robótica , Adulto , Anaerobiose , Ergometria , Estudos de Viabilidade , Feminino , Humanos , Masculino , Respiração
8.
PLoS One ; 10(4): e0122767, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860019

RESUMO

Robotics-assisted tilt table (RATT) technology provides body support, cyclical stepping movement and physiological loading. This technology can potentially be used to facilitate the estimation of peak cardiopulmonary performance parameters in patients who have neurological or other problems that may preclude testing on a treadmill or cycle ergometer. The aim of the study was to compare the magnitude of peak cardiopulmonary performance parameters including peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) obtained from a robotics-assisted tilt table (RATT), a cycle ergometer and a treadmill. The strength of correlations between the three devices, test-retest reliability and repeatability were also assessed. Eighteen healthy subjects performed six maximal exercise tests, with two tests on each of the three exercise modalities. Data from the second tests were used for the comparative and correlation analyses. For nine subjects, test-retest reliability and repeatability of VO2peak and HRpeak were assessed. Absolute VO2peak from the RATT, the cycle ergometer and the treadmill was (mean (SD)) 2.2 (0.56), 2.8 (0.80) and 3.2 (0.87) L/min, respectively (p < 0.001). HRpeak from the RATT, the cycle ergometer and the treadmill was 168 (9.5), 179 (7.9) and 184 (6.9) beats/min, respectively (p < 0.001). VO2peak and HRpeak from the RATT vs the cycle ergometer and the RATT vs the treadmill showed strong correlations. Test-retest reliability and repeatability were high for VO2peak and HRpeak for all devices. The results demonstrate that the RATT is a valid and reliable device for exercise testing. There is potential for the RATT to be used in severely impaired subjects who cannot use the standard modalities.


Assuntos
Teste de Esforço , Frequência Cardíaca , Consumo de Oxigênio , Adulto , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
9.
Disabil Rehabil Assist Technol ; 10(5): 433-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24712412

RESUMO

PURPOSE: Robotics-assisted tilt-table (RTT) technology allows neurological rehabilitation therapy to be started early thus alleviating some secondary complications of prolonged bed rest. This study assessed the feasibility of a novel work-rate-guided RTT approach for cardiopulmonary training and assessment in patients with incomplete spinal cord injury (iSCI). METHODS: Three representative subjects with iSCI at three distinct stages of primary rehabilitation completed an incremental exercise test (IET) and a constant load test (CLT) on a RTT augmented with integrated leg-force and position measurement and visual work rate feedback. Feasibility assessment focused on: (i) implementation, (ii) limited efficacy testing, (iii) acceptability. RESULTS: (i) All subjects were able follow the work rate target profile by adapting their volitional leg effort. (ii) During the IETs, peak oxygen uptake above rest was 304, 467 and 1378 ml/min and peak heart rate (HR) was 46, 32 and 65 beats/min above rest (subjects A, B and C, respectively). During the CLTs, steady-state oxygen uptake increased by 42%, 38% and 162% and HR by 12%, 20% and 29%. (iii) All exercise tests were tolerated well. CONCLUSION: The novel work-rate guided RTT intervention is deemed feasible for cardiopulmonary training and assessment in patients with iSCI: substantial cardiopulmonary responses were observed and the approach was found to be tolerable and implementable. Implications for Rehabilitation Work-rate guided robotics-assisted tilt-table technology is deemed feasible for cardiopulmonary assessment and training in patients with incomplete spinal cord injury. Robotics-assisted tilt-tables might be a good way to start with an active rehabilitation as early as possible after a spinal cord injury. During training with robotics-assisted devices the active participation of the patients is crucial to strain the cardiopulmonary system and hence gain from the training.


Assuntos
Teste de Esforço/instrumentação , Terapia por Exercício/instrumentação , Aptidão Física , Robótica/instrumentação , Traumatismos da Medula Espinal/reabilitação , Adulto , Avaliação da Deficiência , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade , Reabilitação Neurológica , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...