Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(7): e1008283, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702070

RESUMO

Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism.


Assuntos
Proteínas Priônicas/metabolismo , Baço/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo
2.
Mol Neurobiol ; 57(6): 2572-2587, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239450

RESUMO

Prion replication results from the autocatalytic templated assisted conversion of the host-encoded prion protein PrPC into misfolded, polydisperse PrPSc conformers. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Within and between prion strains, the biological activity (replicative efficacy and specific infectivity) of PrPSc assemblies is size dependent and thus reflects an intrinsic structural heterogeneity. The contribution of such PrPSc heterogeneity across species prion adaptation, which is believed to be based on fit adjustment between PrPSc template(s) and host PrPC, has not been explored. To define the structural-to-fitness PrPSc landscape, we measured the relative capacity of size-fractionated PrPSc assemblies from different prion strains to cross mounting species barriers in transgenic mice expressing foreign PrPC. In the absence of a transmission barrier, the relative efficacy of the isolated PrPSc assemblies to induce the disease is like the efficacy observed in the homotypic context. However, in the presence of a transmission barrier, size fractionation overtly delays and even abrogates prion pathogenesis in both the brain and spleen tissues, independently of the infectivity load of the isolated assemblies. Altering by serial dilution PrPSc assembly content of non-fractionated inocula aberrantly reduces their specific infectivity, solely in the presence of a transmission barrier. This suggests that synergy between structurally distinct PrPSc assemblies in the inoculum is requested for crossing the species barrier. Our data support a mechanism whereby overcoming prion species barrier requires complementation between structurally distinct PrPSc assemblies. This work provides key insight into the "quasispecies" concept applied to prions, which would not necessarily rely on prion substrains as constituent but on structural PrPSc heterogeneity within prion population.


Assuntos
Encéfalo/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Animais , Bovinos , Cricetinae , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/metabolismo , Ovinos
3.
Sci Rep ; 9(1): 14656, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601984

RESUMO

In peripherally acquired prion diseases, prions move through several tissues of the infected host, notably in the lymphoid tissue, long before the occurrence of neuroinvasion. Accumulation can even be restricted to the lymphoid tissue without neuroinvasion and clinical disease. Several experimental observations indicated that the presence of differentiated follicular dendritic cells (FDCs) in the lymphoid structures and the strain type are critical determinants of prion extraneural replication. In this context, the report that granulomatous structures apparently devoid of FDCs could support prion replication raised the question of the requirements for prion lymphotropism. The report also raised the possibility that nonlymphoid tissue-tropic prions could actually target these inflammatory structures. To investigate these issues, we examined the capacity of closely related prions, albeit with opposite lymphotropism (or FDC dependency), for establishment in experimentally-induced granuloma in ovine PrP transgenic mice. We found a positive correlation between the prion capacity to accumulate in the lymphoid tissue and granuloma, regardless of the prion detection method used. Surprisingly, we also revealed that the accumulation of prions in granulomas involved lymphoid-like structures associated with the granulomas and containing cells that stain positive for PrP, Mfge-8 but not CD45 that strongly suggest FDCs. These results suggest that the FDC requirement for prion replication in lymphoid/inflammatory tissues may be strain-dependent.


Assuntos
Células Dendríticas Foliculares/metabolismo , Granuloma/patologia , Doenças Priônicas/patologia , Proteínas Priônicas/metabolismo , Animais , Antígenos de Superfície/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Leite/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/isolamento & purificação , Proteínas Priônicas/toxicidade , Dobramento de Proteína , Ovinos , Baço/citologia , Tropismo
4.
Prion ; 11(1): 25-30, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28281924

RESUMO

Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a ß-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure.


Assuntos
Príons/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Camundongos , Modelos Moleculares , Príons/patogenicidade , Conformação Proteica , Virulência
5.
Nat Commun ; 8: 14170, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112164

RESUMO

Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrPC into PrPSc. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Constrained interactions between PrPC and different PrPSc strains can in turn lead to certain PrPSc (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrPC. Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrPC. While breeding true in mice expressing PrPC at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrPC overexpression. Our results support the view that PrPC gene dosage can influence prion evolution on homotypic transmission.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Proteínas PrPC/metabolismo , Animais , Genótipo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas PrPC/genética , Ovinos
6.
J Virol ; 90(23): 10867-10874, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681129

RESUMO

Prions are proteinaceous pathogens responsible for subacute spongiform encephalopathies in animals and humans. The prions responsible for bovine spongiform encephalopathy (BSE) are zoonotic agents, causing variant Creutzfeldt-Jakob disease (CJD) in humans. The transfer of prions between species is limited by a species barrier, which is thought to reflect structural incompatibilities between the host cellular prion protein (PrPC) and the infecting pathological PrP assemblies (PrPSc) constituting the prion. A BSE strain variant, designated L-BSE and responsible for atypical, supposedly spontaneous forms of prion diseases in aged cattle, demonstrates zoonotic potential, as evidenced by its capacity to propagate more easily than classical BSE in transgenic mice expressing human PrPC and in nonhuman primates. In humanized mice, L-BSE propagates without any apparent species barrier and shares similar biochemical PrPSc signatures with the CJD subtype designated MM2-cortical, thus opening the possibility that certain CJD cases classified as sporadic may actually originate from L-type BSE cross-transmission. To address this issue, we compared the biological properties of L-BSE and those of a panel of CJD subtypes representative of the human prion strain diversity using standard strain-typing criteria in human PrP transgenic mice. We found no evidence that L-BSE causes a known form of sporadic CJD. IMPORTANCE: Since the quasi-extinction of classical BSE, atypical BSE forms are the sole BSE variants circulating in cattle worldwide. They are observed in rare cases of old cattle, making them difficult to detect. Extrapolation of our results suggests that L-BSE may propagate in humans as an unrecognized form of CJD, and we urge both the continued utilization of precautionary measures to eliminate these agents from the human food chain and active surveillance for CJD phenotypes in the general population.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Encefalopatia Espongiforme Bovina/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Síndrome de Creutzfeldt-Jakob/etiologia , Síndrome de Creutzfeldt-Jakob/transmissão , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/etiologia , Encefalopatia Espongiforme Bovina/transmissão , Variação Genética , Especificidade de Hospedeiro , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPC/genética , Proteínas PrPC/patogenicidade , Proteínas PrPSc/genética , Proteínas PrPSc/patogenicidade
7.
Sci Rep ; 6: 29116, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384922

RESUMO

Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.


Assuntos
Bioquímica/métodos , Príons/metabolismo , Dobramento de Proteína , Animais , Encéfalo/metabolismo , Extratos Celulares , Linhagem Celular , Células Cultivadas , Eletroforese , Técnicas de Inativação de Genes , Glicosilação , Humanos , Camundongos Transgênicos , Microesferas , Miniaturização , Proteínas Mutantes/metabolismo , Fatores de Tempo
8.
J Virol ; 90(15): 6963-6975, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226369

RESUMO

UNLABELLED: Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE: Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion.


Assuntos
Células Epiteliais/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Scrapie/metabolismo , Deleção de Sequência , Sequência de Aminoácidos , Animais , Camundongos , Camundongos Transgênicos , Proteínas PrPC/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ovinos , Relação Estrutura-Atividade
9.
Acta Neuropathol Commun ; 4: 10, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847207

RESUMO

INTRODUCTION: Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP(Sc), a misfolded isoform of the host-encoded prion protein PrP(C). Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP(Sc) in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP(Sc)), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP(C). RESULTS: In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP(Sc) biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. CONCLUSIONS: Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of sporadic CJD upon homologous and heterologous transmission. The notion that the environment or matrix where replication is occurring is key to the selection and preferential amplification of prion substrain components raises new questions on the determinants of prion replication within and between species. These data also further interrogate on the interplay between animal and human prions.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Síndrome de Creutzfeldt-Jakob , Polimorfismo Genético/genética , Príons/genética , Animais , Linhagem Celular Transformada , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/transmissão , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Príons/classificação , Dobramento de Proteína , Ovinos , Baço/metabolismo , Baço/patologia , Suínos , Transfecção
10.
J Virol ; 90(3): 1638-46, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608316

RESUMO

UNLABELLED: Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE: Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.


Assuntos
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doenças Priônicas/patologia , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Mutação de Sentido Incorreto , Deleção de Sequência , Ovinos
11.
Sci Rep ; 5: 17146, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26679898

RESUMO

Although conversion of the cellular form of the prion protein (PrP(C)) into a misfolded isoform is the underlying cause of prion diseases, understanding PrP(C) physiological functions has remained challenging. PrP(C) depletion or overexpression alters the proliferation and differentiation properties of various types of stem and progenitor cells in vitro by unknown mechanisms. Such involvement remains uncertain in vivo in the absence of any drastic phenotype of mice lacking PrP(C). Here, we report PrP(C) enrichment at the base of the primary cilium in stem and progenitor cells from the central nervous system and cardiovascular system of developing mouse embryos. PrP(C) depletion in a neuroepithelial cell line dramatically altered key cilium-dependent processes, such as Sonic hedgehog signalling and α-tubulin post-translational modifications. These processes were also affected over a limited time window in PrP(C)-ablated embryos. Thus, our study reveals PrP(C) as a potential actor in the developmental regulation of microtubule dynamics and ciliary functions.


Assuntos
Cílios/metabolismo , Príons/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Células Cultivadas , Sistema Nervoso Central/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Proteínas Hedgehog/metabolismo , Camundongos , Microscopia Confocal , Proteínas PrPC/deficiência , Proteínas PrPC/genética , Príons/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
PLoS Pathog ; 11(8): e1005077, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26248157

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.


Assuntos
Proteínas PrPC/genética , Scrapie/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Feminino , Immunoblotting , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Especificidade da Espécie
13.
Front Cell Dev Biol ; 2: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364742

RESUMO

Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health.

14.
Front Cell Dev Biol ; 2: 58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364763

RESUMO

The deletion of the cellular form of the prion protein (PrP(C)) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrP(C) quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrP(C) in the development of all vertebrates. This view is further supported by the early expression of the PrP(C) encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp(-/-) mouse embryos, and a growing body of evidence for PrP(C) involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrP(C) in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrP(C) functions at early developmental stages during embryo- and organo-genesis and discuss their relevance.

15.
J Virol ; 88(15): 8678-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850746

RESUMO

UNLABELLED: The dietary exposure of the human population to the prions responsible for the bovine spongiform encephalopathy (BSE) epizooty has led to the emergence of variant Creutzfeldt-Jakob disease (vCJD). This fatal, untreatable neurodegenerative disorder is a growing public health concern because the prevalence of the infection seems much greater than the disease incidence and because secondary transmission of vCJD by blood transfusion or use of blood products has occurred. A current limitation in variant CJD risk assessment is the lack of quantitative information on the infectivity of contaminated tissues. To address this limitation, we tested the potential of a transgenic mouse line overexpressing human prion protein (PrP), which was previously reported to propagate vCJD prions. Endpoint titration of vCJD infectivity in different tissues was evaluated by two different methods: (i) the "classical" bioassay, based on the appearance of clinical symptoms and the detection of pathological prion protein in tissues of the inoculated mouse, and (ii) a shortened bioassay based on the detection of the protein in the mouse spleen at defined time points. The two methods proved equally sensitive in quantifying infectivity, even after very-low-dose inoculation of infected material, but the time schedule was shortened from ~2.5 years to ~1 year with the spleen bioassay. Compared to the "gold-standard" RIII model routinely used for endpoint titration of vCJD/BSE prions, either method improved the sensitivity by >2 orders of magnitude and allowed reevaluating the infectious titer of spleen from a vCJD individual at disease end stage to >1,000-fold-higher values. IMPORTANCE: Here, we provide key reevaluation of the infectious titer of variant CJD brain and spleen tissues. The highly sensitive, accelerated spleen-based assay should thus constitute a key advance for variant CJD epidemiological and risk assessment purposes and should greatly facilitate future titration studies, including, for example, those aimed at validating decontamination procedures. The overlooked notion that the lymphoid tissue exhibits a higher capacity than the brain to replicate prions even after low-dose infection raises new questions about the molecular and/or cellular determinant(s) involved, a key issue regarding potent silent carriers of variant CJD in the lymphoid tissue.


Assuntos
Técnicas de Laboratório Clínico/métodos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Príons/análise , Baço/química , Animais , Bioensaio , Humanos , Camundongos , Camundongos Transgênicos , Sensibilidade e Especificidade , Fatores de Tempo
16.
Transfusion ; 54(4): 1028-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24032663

RESUMO

BACKGROUND: The high resistance of prions to inactivating treatments requires the proper management of decontaminating procedures of equipment in contact with materials of human or animal origin destined for medical purposes. Sodium hydroxide (NaOH) is widely used today for this purpose as it inactivates a wide variety of pathogens including prions. STUDY DESIGN AND METHODS: Several NaOH treatments were tested on prions bound to either stainless steel or chromatographic resins in industrial conditions with multiple prion strains. RESULTS: Data show a strong correlation between inactivation results obtained by immunochemical detection of the prion protein and those obtained with infectivity assays and establish effective inactivation treatments for prions bound to stainless steel or chromatographic resins (ion exchange and affinity), including treatments with lower NaOH concentrations. Furthermore, no obvious strain-specific behavior difference was observed between experimental models. CONCLUSION: The results generated by these investigations show that industrial NaOH decontamination regimens (in combination with the NaCl elution in the case of the chromatography process) attain substantial prion inactivation and/or removal between batches, thus providing added assurance to the biologic safety of the final plasma-derived medicinal products.


Assuntos
Descontaminação/métodos , Plasma/química , Príons/isolamento & purificação , Animais , Armazenamento de Sangue/métodos , Cricetinae , Relação Dose-Resposta a Droga , Ambiente Controlado , Contaminação de Equipamentos/prevenção & controle , Humanos , Manufaturas , Mesocricetus , Camundongos , Hidróxido de Sódio/farmacologia , Aço Inoxidável
17.
PLoS Pathog ; 9(10): e1003702, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130496

RESUMO

Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrP(Sc), an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). Stable variations in PrP(Sc) conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrP(Sc) quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrP(Sc) quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrP(Sc). To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrP(Sc) tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrP(Sc) aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrP(Sc) quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.


Assuntos
Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Ovinos/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Doenças Priônicas/genética , Estrutura Quaternária de Proteína , Ovinos/genética , Especificidade da Espécie , Fatores de Tempo
18.
PLoS One ; 8(7): e69632, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894513

RESUMO

BACKGROUND: Variant Creutzfeldt-Jakob disease (vCJD) is a neurodegenerative infectious disorder, characterized by a prominent accumulation of pathological isoforms of the prion protein (PrP(TSE)) in the brain and lymphoid tissues. Since the publication in the United Kingdom of four apparent vCJD cases following transfusion of red blood cells and one apparent case following treatment with factor VIII, the presence of vCJD infectivity in the blood seems highly probable. For effective blood testing of vCJD individuals in the preclinical or clinical phase of infection, it is considered necessary that assays detect PrP(TSE) concentrations in the femtomolar range. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a three-step assay that firstly captures PrP(TSE) from infected blood using a plasminogen-coated magnetic-nanobead method prior to its serial amplification via protein misfolding cyclic amplification (PMCA) and specific PrP(TSE) detection by western blot. We achieved a PrP(TSE) capture yield of 95% from scrapie-infected material. We demonstrated the possibility of detecting PrP(TSE) in white blood cells, in buffy coat and in plasma isolated from the blood of scrapie-infected sheep collected at the pre-clinical stage of the disease. The test also allowed the detection of PrP(TSE) in human plasma spiked with a 10(-8) dilution of vCJD-infected brain homogenate corresponding to the level of sensitivity (femtogram) required for the detection of the PrP(TSE) in asymptomatic carriers. The 100% specificity of the test was revealed using a blinded panel comprising 96 human plasma samples. CONCLUSION/SIGNIFICANCE: We have developed a sensitive and specific amplification assay allowing the detection of PrP(TSE) in the plasma and buffy coat fractions of blood collected at the pre-clinical phase of the disease. This assay represents a good candidate as a confirmatory assay for the presence of PrP(TSE) in blood of patients displaying positivity in large scale screening tests.


Assuntos
Bioensaio/métodos , Síndrome de Creutzfeldt-Jakob/sangue , Plasminogênio/química , Príons/sangue , Humanos
19.
PLoS One ; 8(3): e58786, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527023

RESUMO

The four glycoforms of the cellular prion protein (PrP(C)) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrP(Sc)) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrP(Sc) in the recently identified variably protease-sensitive prionopathy (VPSPr) is the absence of a diglycosylated form, also notable in familial Creutzfeldt-Jakob disease (fCJD), which is linked to mutations in PrP either from Val to Ile at residue 180 (fCJD(V180I)) or from Thr to Ala at residue 183 (fCJD(T183A)). Here we report that fCJD(V180I), but not fCJD(T183A), exhibits a proteinase K (PK)-resistant PrP (PrP(res)) that is markedly similar to that observed in VPSPr, which exhibits a five-step ladder-like electrophoretic profile, a molecular hallmark of VPSPr. Remarkably, the absence of the diglycosylated PrP(res) species in both fCJD(V180I) and VPSPr is likewise attributable to the absence of PrP(res) glycosylated at the first N-linked glycosylation site at residue 181, as in fCJD(T183A). In contrast to fCJD(T183A), both VPSPr and fCJD(V180I) exhibit glycosylation at residue 181 on di- and monoglycosylated (mono181) PrP prior to PK-treatment. Furthermore, PrP(V180I) with a typical glycoform profile from cultured cells generates detectable PrP(res) that also contains the diglycosylated PrP in addition to mono- and unglycosylated forms upon PK-treatment. Taken together, our current in vivo and in vitro studies indicate that sporadic VPSPr and familial CJD(V180I) share a unique glycoform-selective prion formation pathway in which the conversion of diglycosylated and mono181 PrP(C) to PrP(Sc) is inhibited, probably by a dominant-negative effect, or by other co-factors.


Assuntos
Doenças Priônicas/metabolismo , Príons/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Membrana Celular/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Endopeptidase K/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Polissacarídeos/química , Príons/química , Proteólise , Valina/química
20.
J Gen Virol ; 94(Pt 6): 1435-1440, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23388201

RESUMO

In naturally acquired transmissible spongiform encephalopathies, the pathogenic agents or prions spread from the sites of initial peripheral uptake or replication to the brain where they cause progressive and fatal neurodegeneration. Routing via the peripheral nervous system is considered to be one of the main pathways to the central nervous system. Replication of prions in Schwann cells is viewed as a potentially important mechanism for efficient prion spread along nerves. Here we used a Cre-loxP mouse transgenetic approach to disrupt host-encoded prion protein (PrP(C)) specifically in myelinating Schwann cells. Despite the use of infection routes targeting highly myelinated nerves, there was no alteration in mouse prion pathogenesis, suggesting that conversion-dependent, centripetal spread of prions does not crucially rely on PrP(C) expressed by myelinating Schwann cells.


Assuntos
Marcação de Genes , Bainha de Mielina/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Células de Schwann/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Bainha de Mielina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...