Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709683

RESUMO

Plants respond to increased CO2 concentrations through stomatal closure, which can contribute to increased water use efficiency. Grasses display faster stomatal responses than eudicots due to dumbbell-shaped guard cells flanked by subsidiary cells working in opposition. However, forward genetic screening for stomatal CO2 signal transduction mutants in grasses has yet to be reported. The grass model Brachypodium distachyon is closely related to agronomically important cereal crops, sharing largely collinear genomes. To gain insights into CO2 control mechanisms of stomatal movements in grasses, we developed an unbiased forward genetic screen with an EMS-mutagenized Brachypodium distachyon M5 generation population using infrared imaging to identify plants with altered leaf temperatures at elevated CO2. Among isolated mutants, a "chill1" mutant exhibited cooler leaf temperatures than wildtype Bd21-3 parent control plants after exposure to increased [CO2]. chill1 plants showed strongly impaired high CO2-induced stomatal closure despite retaining a robust abscisic acid-induced stomatal closing response. Through bulked segregant whole-genome-sequencing analyses followed by analyses of further backcrossed F4 generation plants and generation and characterization of sodium-azide and CRISPR-cas9 mutants, chill1 was mapped to a protein kinase, Mitogen-Activated Protein Kinase 5 (BdMPK5). The chill1 mutation impaired BdMPK5 protein-mediated CO2/HCO3- sensing together with the High Temperature 1 (HT1) Raf-like kinase in vitro. Furthermore, AlphaFold2-directed structural modeling predicted that the identified BdMPK5-D90N chill1 mutant residue is located at the interface of BdMPK5 with the BdHT1 Raf-like kinase. BdMPK5 is a key signaling component that mediates CO2-induced stomatal movements and is proposed to function as a component of the primary CO2 sensor in grasses.

2.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470914

RESUMO

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Assuntos
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , RNA Interferente Pequeno , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais/genética , Filogenia , Evolução Molecular
3.
PLoS Genet ; 19(5): e1010706, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163541

RESUMO

Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.


Assuntos
Brachypodium , Fitocromo , Proteínas de Plantas , Fatores de Transcrição , Brachypodium/genética , Brachypodium/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Fotoperíodo , Fatores de Transcrição/metabolismo , Epistasia Genética , Mutação , Perfilação da Expressão Gênica , Flores/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047802

RESUMO

Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.


Assuntos
Brachypodium , Glucanos , Glucanos/metabolismo , Amido/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Germinação/genética , Endosperma/genética , Endosperma/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo
5.
Curr Biol ; 33(9): 1844-1854.e6, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37086717

RESUMO

The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.


Assuntos
Brachypodium , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Brachypodium/genética , Peroxidase/metabolismo , Folhas de Planta/fisiologia , Peroxidases/metabolismo
6.
Plant J ; 109(6): 1559-1574, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953105

RESUMO

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiologia , Brachypodium/genética , Furanos , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Piranos , Simbiose
7.
BMC Plant Biol ; 21(1): 196, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892630

RESUMO

BACKGROUND: The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS: We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION: In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.


Assuntos
Brachypodium/genética , Floema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Xilema/crescimento & desenvolvimento , Brachypodium/crescimento & desenvolvimento , Brachypodium/metabolismo , Floema/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Xilema/genética
8.
Methods Mol Biol ; 2166: 387-411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710422

RESUMO

Cells have sophisticated RNA-directed mechanisms to regulate genes, destroy viruses, or silence transposable elements (TEs). In terrestrial plants, a specialized non-coding RNA machinery involving RNA polymerase IV (Pol IV) and small interfering RNAs (siRNAs) targets DNA methylation and silencing to TEs. Here, we present a bioinformatics protocol for annotating and quantifying siRNAs that derive from long terminal repeat (LTR) retrotransposons. The approach was validated using small RNA northern blot analyses, comparing the species Arabidopsis thaliana and Brachypodium distachyon. To assist hybridization probe design, we configured a genome browser to show small RNA-seq mappings in distinct colors and shades according to their nucleotide lengths and abundances, respectively. Samples from wild-type and pol IV mutant plants, cross-species negative controls, and a conserved microRNA control validated the detected siRNA signals, confirming their origin from specific TEs and their Pol IV-dependent biogenesis. Moreover, an optimized labeling method yielded probes that could detect low-abundance siRNAs from B. distachyon TEs. The integration of de novo TE annotation, small RNA-seq profiling, and northern blotting, as outlined here, will facilitate the comparative genomic analysis of RNA silencing in crop plants and non-model species.


Assuntos
Arabidopsis/genética , Northern Blotting/métodos , Brachypodium/genética , Genoma de Planta , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Retroelementos/genética , Proteínas de Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA-Seq , Sequências Repetidas Terminais/genética
9.
MethodsX ; 7: 100858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322542

RESUMO

Acid-polyacrylamide gel electrophoresis (A-PAGE) is used to phenotype different varieties of wheat based on their gliadin profiles. The family of gliadin proteins is a major component of wheat gluten. Gluten is the major determinant of the unique viscoelastic property of wheat dough that is necessary in the production of important food products including bread, cake, cookies and pasta. However, several gliadin proteins are also known to be causal agents in triggering human immunogenic responses that lead to several gluten-related health risks like celiac disease and wheat-dependent exercise-induced anaphylaxis. Therefore, research to identify wheat lines with reduced levels of immunogenic proteins is being vigorously pursued in several laboratories around the world. Unfortunately, no commercial A-PAGE gels are currently available for cereal researchers to use for separating wheat gliadins. This work reports the development of an easy-to-use A-PAGE protocol to resolve gliadins with high reproducibility and resolution to screen and phenotype gliadin deficient lines in wheat.•This acetic acid based A-PAGE method with urea utilizes commercially available reagents and materials to make gel casting simpler and more efficient.•It can be used to phenotype different wheat varieties to establish purity and to identify mutants of wheat with altered gliadin protein profiles.

10.
New Phytol ; 227(6): 1725-1735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32173866

RESUMO

The timing of reproduction is a critical developmental decision in the life cycle of many plant species. Fine mapping of a rapid-flowering mutant was done using whole-genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed. To better understand the molecular basis of the rapid-flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild-type. Consistent with the rapid-flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant. Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion in POLD3 in plants.


Assuntos
Brachypodium , Brachypodium/genética , Brachypodium/metabolismo , DNA Polimerase III , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução
11.
Plant Physiol ; 176(3): 2376-2394, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29259104

RESUMO

Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Triticum/fisiologia , Alelos , Parede Celular/genética , Parede Celular/metabolismo , Cromossomos de Plantas , Análise por Conglomerados , Resposta ao Choque Frio/genética , Flores/genética , Perfilação da Expressão Gênica , Genótipo , Redes e Vias Metabólicas/genética , Polimorfismo Genético , Saskatchewan , Triticum/genética , Triticum/crescimento & desenvolvimento
12.
Genetics ; 194(1): 265-77, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475987

RESUMO

Quantitative phenotypic traits are influenced by genetic and environmental variables as well as the interaction between the two. Underlying genetic × environment interaction is the influence that the surrounding environment exerts on gene expression. Perturbation of gene expression by environmental factors manifests itself in alterations to gene co-expression networks and ultimately in phenotypic plasticity. Comparative gene co-expression networks have been used to uncover biological mechanisms that differentiate tissues or other biological factors. In this study, we have extended consensus and differential Weighted Gene Co-Expression Network Analysis to compare the influence of different growing environments on gene co-expression in the mature wheat (Triticum aestivum) embryo. This network approach was combined with mapping of individual gene expression QTL to examine the genetic control of environmentally static and variable gene expression. The approach is useful for gene expression experiments containing multiple environments and allowed for the identification of specific gene co-expression modules responsive to environmental factors. This procedure identified conserved coregulation of gene expression between environments related to basic developmental and cellular functions, including protein localization and catabolism, vesicle composition/trafficking, Golgi transport, and polysaccharide metabolism among others. Environmentally unique modules were found to contain genes with predicted functions in responding to abiotic and biotic environmental variables. These findings represent the first report using consensus and differential Weighted Gene Co-expression Network Analysis to characterize the influence of environment on coordinated transcriptional regulation.


Assuntos
Meio Ambiente , Sementes/embriologia , Sementes/genética , Triticum/embriologia , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Ligação Genética , Locos de Características Quantitativas/genética
13.
Comp Funct Genomics ; 2012: 232530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22474410

RESUMO

The expression of 1,613 transposable elements (TEs) represented in the Affymetrix Wheat Genome Chip was examined during cold treatment in crowns of four hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throughout the experiment in three of the genotypes. In winter Norstar, the most cold-hardy of the four genotypes, a subset of the TEs showed a burst of expression after vernalization saturation was achieved. About 47% of the TEs were expressed, and both Class I (retrotransposons) and Class II (DNA transposons) types were well represented. Gypsy and Copia were the most represented among the retrotransposons while CACTA and Mariner were the most represented DNA transposons. The data suggests that the Vrn-A1 region plays a role in the stage-specific induction of TE expression in this genotype.

14.
BMC Genomics ; 12: 299, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21649926

RESUMO

BACKGROUND: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expression of genes in winter-habit (winter Norstar and winter Manitou) and spring-habit (spring Manitou and spring Norstar)) cultivars, wherein the locus for the vernalization gene Vrn-A1 was swapped between the parental winter Norstar and spring Manitou in the derived near-isogenic lines winter Manitou and spring Norstar. Global expression of genes in the crowns of 3-leaf stage plants cold-acclimated at 6°C for 0, 2, 14, 21, 38, 42, 56 and 70 days was examined. RESULTS: Analysis of variance of gene expression separated the samples by genetic background and by the developmental stage before or after vernalization saturation was reached. Using gene-specific ANOVA we identified 12,901 genes (at p < 0.001) that change in expression with respect to both genotype and the duration of cold-treatment. We examined in more detail a subset of these genes (2,771) where expression was highly influenced by the interaction between these two main factors. Functional assignments using GO annotations showed that genes involved in transport, oxidation-reduction, and stress response were highly represented. Clustering based on the pattern of transcript accumulation identified genes that were up or down-regulated by cold-treatment. Our data indicate that the cold-sensitive lines can up-regulate known cold-responsive genes comparable to that of cold-hardy lines. The levels of expression of these genes were highly influenced by the initial rate and the duration of the gene's response to cold. We show that the Vrn-A1 locus controls the duration of gene expression but not its initial rate of response to cold treatment. Furthermore, we provide evidence that Ta.Vrn-A1 and Ta.Vrt1 originally hypothesized to encode for the same gene showed different patterns of expression and therefore are distinct. CONCLUSION: This study provides novel insight into the underlying mechanisms that regulate the expression of cold-responsive genes in wheat. The results support the developmental model of LT tolerance gene regulation and demonstrate the complex genotype by environment interactions that determine LT adaptation in winter annual cereals.


Assuntos
Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Triticum/genética , Análise por Conglomerados , Temperatura Baixa , Perfilação da Expressão Gênica , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Análise de Componente Principal , Triticum/crescimento & desenvolvimento
15.
Genetics ; 181(3): 1147-57, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19104075

RESUMO

Effects of polyploidy in allohexaploid wheat (Triticum aestivum L.) have primarily been ascribed to increases in coding sequence variation and potential to acquire new gene functions through mutation of redundant loci. However, regulatory variation that arises through new promoter and transcription factor combinations or epigenetic events may also contribute to the effects of polyploidization. In this study, gene expression was characterized in a synthetic T. aestivum line and the T. turgidum and Aegilops tauschii parents to establish a timeline for such regulatory changes and estimate the frequency of nonadditive expression of homoeologous transcripts in newly formed T. aestivum. Large-scale analysis of nonadditive gene expression was assayed by microarray expression experiments, where synthetic T. aestivum gene expression was compared to additive model values (mid-parent) calculated from parental T. turgidum and Ae. tauschii expression levels. Approximately 16% of genes were estimated to display nonadditive expression in synthetic T. aestivum. A certain fraction of the genes (2.9%) showed overdominance or underdominance. cDNA-single strand conformation polymorphism analysis was applied to measure expression of homoeologous transcripts and further verify microarray data. The results demonstrate that allopolyploidization, per se, results in rapid initiation of differential expression of homoeologous loci and nonadditive gene expression in T. aestivum.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Poliploidia , Triticum/genética , DNA Complementar/genética , Evolução Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Conformacional de Fita Simples , RNA Mensageiro/genética , Fatores de Tempo
16.
Int J Plant Genomics ; 2009: 407426, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20224818

RESUMO

The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.

17.
Proteomics ; 8(14): 2948-66, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18655071

RESUMO

We carried out a parallel transcriptional and proteomic comparison of seeds from a transformed bread wheat line that overexpresses a transgenic low molecular weight glutenin subunit gene relative to the corresponding nontransformed genotype. Proteomic analyses showed that, during seed development, several classes of endosperm proteins were differentially accumulated in the transformed endosperm. As a result of the strong increase in the amount of the transgenic protein, the endogenous glutenin subunit, all subclasses of gliadins, and metabolic as well as chloroform/methanol soluble proteins were diminished in the transgenic genotype. The differential accumulation detected by proteomic analyses, both in mature and developing seeds, was paralleled by the corresponding changes in transcript levels detected by microarray experiments. Our results suggest that the most evident effect of the strong overexpression of the transgenic glutenin gene consists in a global compensatory response involving a significant decrease in the amounts of polypeptides belonging to the prolamin superfamily. It is likely that such compensation is a consequence of the diversion of amino acid reserves and translation machinery to the synthesis of the transgenic glutenin subunit.


Assuntos
Perfilação da Expressão Gênica , Glutens/genética , Plantas Geneticamente Modificadas , Subunidades Proteicas/genética , Proteoma/metabolismo , Proteômica , Triticum/genética , Triticum/metabolismo , Sequência de Aminoácidos , Animais , Glutens/biossíntese , Dados de Sequência Molecular , Peso Molecular , Subunidades Proteicas/biossíntese , Proteoma/genética , Sementes/genética , Sementes/metabolismo , Espectrometria de Massas em Tandem , Transcrição Gênica/fisiologia
18.
Theor Appl Genet ; 117(4): 555-63, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18528675

RESUMO

Brachypodium distachyon is being developed as a model system to study temperate cereals and forage grasses. We have begun to investigate its utility to understand seed development and grain filling by identifying the major seed storage proteins in a diploid accession Bd21. With the use of ID SDS-PAGE and mass spectrometry we detected seven major storage protein bands, six of which were identified as globulins. A subset of the major seed proteins isolated from three hexaploid accessions, Bd4, Bd14 and Bd17 were also identified as globulins. Several Brachypodium cDNAs clones encoding globulin were completely sequenced. Two types of globulin genes were identified, Bd.glo1 and Bd.glo2, which are similar to maize 7S and oat 12S globulins, respectively. The derived polypeptide sequences of the globulins contain a typical signal peptide sequence in their polypeptide N-termini and two cupin domains. Bd.glo1 is encoded by a single copy gene, whereas, Bd.glo2 belongs to a gene family.


Assuntos
Globulinas/genética , Globulinas/isolamento & purificação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Poaceae/química , Poaceae/genética , Sequência de Aminoácidos , DNA de Plantas/genética , Evolução Molecular , Dados de Sequência Molecular , Poaceae/classificação , Sementes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
Lipids ; 42(3): 263-74, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17393231

RESUMO

Castor seed triacylglycerols (TAGs) contain 90% ricinoleate (12-hydroxy-oleate) which has numerous industrial applications. Due to the presence of the toxin ricin and potent allergenic 2S albumins in the seed, it is desirable to produce ricinoleate from temperate oilseeds. To identify regulatory genes or genes for enzymes that may up-regulate multiple activities or entire pathways leading to the ricinoleate and TAG synthesis, we have analyzed expression profiles of 12 castor genes involved in fatty acid and TAG synthesis using quantitative reverse transcription-polymerase chain reaction technology. A collection of castor seeds with well-defined developmental stages and morphologies was used to determine the levels of mRNA, ricinoleate and TAG. The synthesis of ricinoleate and TAG occurred when seeds progressed to stages of cellular endosperm development. Concomitantly, most of the genes increased their expression levels, but showed various temporal expression patterns and different maximum inductions ranging from 4- to 43,000-fold. Clustering analysis of the expression data indicated five gene groups with distinct temporal patterns. We identified genes involved in fatty acid biosynthesis and transport that fell into two related clusters with moderate flat-rise or concave-rise patterns, and others that were highly expressed during seed development that displayed either linear-rise or bell-shaped patterns. Castor diacylglycerol acyltransferase 1 was the only gene having a higher expression level in leaf and a declining pattern during cellular endosperm development. The relationships among gene expression, cellular endosperm development and ricinoleate/TAG accumulation are discussed.


Assuntos
Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Genes de Plantas , Ricinus/genética , Triglicerídeos/biossíntese , Sequência de Bases , Cromatografia Gasosa , Primers do DNA , Família Multigênica , Ricinus/metabolismo
20.
Plant Mol Biol ; 63(5): 651-68, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17211515

RESUMO

The expression of 7,835 genes in developing wheat caryopses was analyzed using cDNA arrays. Using a mixed model analysis of variance (ANOVA) method, 29% (2,237) of the genes on the array were identified to be differentially expressed at the 6 different time-points examined, which covers the developmental stages from coenocytic endosperm to physiological maturity. Comparison of genes differentially expressed between two time-points revealed a dynamic transcript accumulation profile with major re-programming events that occur at 3-7, 7-14 and 21-28 DPA. A k-means clustering algorithm grouped the differentially expressed genes into 10 clusters, revealing co-expression of genes involved in the same pathway such as carbohydrate and protein synthesis or preparation for desiccation. Functional annotation of genes that show peak expression at specific time-points correlated with the developmental events associated with the respective stages. Results provide information on the temporal expression during caryopsis development for a significant number of differentially expressed genes with unknown function.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica , Triticum/genética , DNA Complementar/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Marcadores Genéticos , Hibridização de Ácido Nucleico , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...