Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 106(8): 2102-2113, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616529

RESUMO

Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors of progenitor cell adhesion in bone marrow (BM). Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML BM samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent from VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. In further consequence, the increased adhesion on VCAM-1 allowed AML cells to strongly bind stromal cells. Thereby VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, supporting AML cell retention in the supportive BM microenvironment.


Assuntos
Integrina alfa4beta1 , Leucemia Mieloide Aguda , Medula Óssea , Adesão Celular , Humanos , Receptores de Hialuronatos/genética , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/genética
2.
Cell Rep ; 29(4): 995-1009.e6, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644919

RESUMO

Chemokine-guided cell migration is pivotal for many immunological and developmental processes. How chemokine receptor signaling persists to guarantee sustained directional migration despite receptor desensitization and internalization remains poorly understood. Here, we uncover a function for an intracellular pool of the chemokine receptor CCR7 present in human dendritic cells and cellular model systems. We find that CCR7 signaling, initiated at the plasma membrane, is translocated by joint trafficking of ß-arrestin and Src kinase to endomembrane-residing CCR7. There, Src tyrosine phosphorylates CCR7, required for the recruitment of Vav1 to form an endomembrane-residing multi-protein signaling complex comprising CCR7, the RhoGEF Vav1, and its effector, Rac1. Interfering with vesicular trafficking affects CCR7-driven cell migration, whereas CCR7:Vav1 interaction at endomembranes is essential for local Rac1 recruitment to CCR7. Photoactivation of Rac1 at endomembranes leads to lamellipodia formation at the cell's leading edge, supporting the role of sustained endomembrane signaling in guiding cell migration.


Assuntos
Membrana Celular/metabolismo , Receptores CCR7/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-vav/metabolismo , beta-Arrestinas/metabolismo , Quinases da Família src/metabolismo
3.
Front Immunol ; 9: 2638, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519239

RESUMO

T cell migration from blood to, and within lymphoid organs and tissue, as well as, T cell activation rely on complex biochemical signaling events. But T cell migration and activation also take place in distinct mechanical environments and lead to drastic morphological changes and reorganization of the acto-myosin cytoskeleton. In this review we discuss how adhesion proteins and the T cell receptor act as mechanosensors to translate these mechanical contexts into signaling events. We further discuss how cell tension could bring a significant contribution to the regulation of T cell signaling and function.


Assuntos
Mecanotransdução Celular/fisiologia , Linfócitos T/fisiologia , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Humanos , Ativação Linfocitária/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo
4.
J Leukoc Biol ; 104(2): 401-411, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29768676

RESUMO

CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21.


Assuntos
Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiotaxia/fisiologia , Células Dendríticas/metabolismo , Animais , Células CHO , Quimiocina CCL19/química , Quimiocina CCL21/química , Cricetinae , Cricetulus , Glicosaminoglicanos/metabolismo , Humanos , Ligantes , Ligação Proteica/fisiologia , Receptores CCR7/metabolismo
5.
J Leukoc Biol ; 104(2): 301-312, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29668063

RESUMO

Chemokines and their receptors coordinate the positioning of leukocytes, and lymphocytes in particular, in space and time. Discrete lymphocyte subsets, depending on their activation and differentiation status, express various sets of chemokine receptors to be recruited to distinct tissues. Thus, the network of chemokines and their receptors ensures the correct localization of specialized lymphocyte subsets within the appropriate microenvironment enabling them to search for cognate antigens, to become activated, and to fulfill their effector functions. The chemokine system therefore is vital for the initiation as well as the regulation of immune responses to protect the body from pathogens while maintaining tolerance towards self. Besides the well investigated function of orchestrating directed cell migration, chemokines additionally act on lymphocytes in multiple ways to shape immune responses. In this review, we highlight and discuss the role of chemokines and chemokine receptors in controlling cell-to-cell contacts required for lymphocyte arrest on endothelial cells and immunological synapse formation, in lymphocyte priming and differentiation, survival, as well as in modulating effector functions.


Assuntos
Diferenciação Celular/imunologia , Quimiocinas/imunologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Animais , Humanos
6.
FASEB J ; 32(9): 4824-4835, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29589978

RESUMO

The ζ-associated protein of 70 kDa (ZAP70) is expressed in the aggressive form of B-cell chronic lymphocytic leukemia (CLL). Moreover, the integrin very late antigen (VLA)-1 is highly expressed on subtypes of CLL that are associated with high proliferation rates in the lymph node context. We herein identify a critical role for ZAP70 in chemokine-mediated, inside-out signaling to integrins in trisomy 12 carrying Ohio State University-CLL cell lines derived from a patient with previously treated CLL. We found that ZAP70-positive CLL cells migrated significantly better toward ligands of the lymph node homing chemokine receptors CCR7 and CXCR4 compared with ZAP70-negative cells. In addition, ZAP70-expressing CLL cells adhered more efficiently to integrin ligands under static conditions. We discovered that ZAP70 expression controls chemokine-driven clustering of the integrins VLA-4 and lymphocyte function-associated antigen-1. More precisely, chemokine stimulation resulted in a ZAP70-dependent integrin valency regulation on CLL cells, whereas high-affinity regulation of integrins was independent of ZAP70. Consequently, ZAP70-expressing CLL cells show increased chemokine-driven arrest on immobilized integrin ligands and on chemokine-presenting endothelial cells under physiologic flow conditions. Hence, we describe a novel mechanism showing how ZAP70 controls chemokine-driven valency regulation of integrins and arrest of CLL cells on endothelial cells, a process that might contribute to CLL disease progression.-Laufer, J. M., Lyck, R., Legler, D. F. ZAP70 expression enhances chemokine-driven chronic lymphocytic leukemia cell migration and arrest by valency regulation of integrins.


Assuntos
Movimento Celular/fisiologia , Integrinas/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Linfócitos B/metabolismo , Quimiocinas/metabolismo , Humanos , Linfonodos/metabolismo , Transdução de Sinais/fisiologia
7.
Front Immunol ; 9: 3115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692994

RESUMO

The chemokine receptor CCR7 guides T cells and dendritic cells to and within lymph nodes to launch the onset of adaptive immunity. Here, we demonstrate that CCR7 in addition acts as a potent co-stimulatory molecule in T cell activation. We found that antigen recognition and engagement of the TCR results in CCR7 accumulation at the immunological synapse where CCR7 and the TCR co-localize within sub-synaptic vesicles. We demonstrate that CCR7 triggering alone is sufficient to recruit and activate ZAP70, a critical kinase for T cell activation, through Src kinase, whereas TCR CCR7 co-stimulation results in increased and prolonged ZAP70 kinase activity. Finally, we show that ZAP70, acting as adapter molecule, is critical for CCR7-mediated inside-out signaling to integrins, thereby modulating LFA-1 valency regulation to promote cell adhesion, a key step in immunological synapse formation and efficient T cell activation.


Assuntos
Sinapses Imunológicas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores CCR7/metabolismo , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Complexo CD3/metabolismo , Adesão Celular/imunologia , Comunicação Celular/imunologia , Fibroblastos , Células HEK293 , Voluntários Saudáveis , Humanos , Hibridomas , Sinapses Imunológicas/imunologia , Células Jurkat , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/imunologia , Camundongos , Monócitos , Cultura Primária de Células , Receptores CCR7/imunologia , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/imunologia
8.
FASEB J ; 31(7): 3084-3097, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28360196

RESUMO

The chemokine receptor, CXC chemokine receptor 4 (CXCR4), is selective for CXC chemokine ligand 12 (CXCL12), is broadly expressed in blood and tissue cells, and is essential during embryogenesis and hematopoiesis. CXCL14 is a homeostatic chemokine with unknown receptor selectivity and preferential expression in peripheral tissues. Here, we demonstrate that CXCL14 synergized with CXCL12 in the induction of chemokine responses in primary human lymphoid cells and cell lines that express CXCR4. Combining subactive concentrations of CXCL12 with 100-300 nM CXCL14 resulted in chemotaxis responses that exceeded maximal responses that were obtained with CXCL12 alone. CXCL14 did not activate CXCR4-expressing cells (i.e., failed to trigger chemotaxis and Ca2+ mobilization, as well as signaling via ERK1/2 and the small GTPase Rac1); however, CXCL14 bound to CXCR4 with high affinity, induced redistribution of cell-surface CXCR4, and enhanced HIV-1 infection by >3-fold. We postulate that CXCL14 is a positive allosteric modulator of CXCR4 that enhances the potency of CXCR4 ligands. Our findings provide new insights that will inform the development of novel therapeutics that target CXCR4 in a range of diseases, including cancer, autoimmunity, and HIV.-Collins, P. J., McCully, M. L., Martínez-Muñoz, L., Santiago, C., Wheeldon, J., Caucheteux, S., Thelen, S., Cecchinato, V., Laufer, J. M., Purvanov, V., Monneau, Y. R., Lortat-Jacob, H., Legler, D. F., Uguccioni, M., Thelen, M., Piguet, V., Mellado, M., Moser, B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4.


Assuntos
Quimiocina CXCL12/metabolismo , Quimiocinas CXC/metabolismo , Regulação da Expressão Gênica/fisiologia , Leucócitos Mononucleares/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocinas CXC/genética , Quimiotaxia , HIV-1/fisiologia , Humanos , Ligação Proteica , Conformação Proteica , RNA Mensageiro , Receptores CXCR4/genética , Transdução de Sinais
9.
Mol Pharmacol ; 91(4): 331-338, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28082305

RESUMO

Chemokine receptors are seven transmembrane-domain receptors belonging to class A of G-protein-coupled receptors (GPCRs). The receptors together with their chemokine ligands constitute the chemokine system, which is essential for directing cell migration and plays a crucial role in a variety of physiologic and pathologic processes. Given the importance of orchestrating cell migration, it is vital that chemokine receptor signaling is tightly regulated to ensure appropriate responses. Recent studies highlight a key role for cholesterol in modulating chemokine receptor activities. The steroid influences the spatial organization of GPCRs within the membrane bilayer, and consequently can tune chemokine receptor signaling. The effects of cholesterol on the organization and function of chemokine receptors and GPCRs in general include direct and indirect effects (Fig. 1). Here, we review how cholesterol and some key metabolites modulate functions of the chemokine system in multiple ways. We emphasize the role of cholesterol in chemokine receptor oligomerization, thereby promoting the formation of a signaling hub enabling integration of distinct signaling pathways at the receptor-membrane interface. Moreover, we discuss the role of cholesterol in stabilizing particular receptor conformations and its consequence for chemokine binding. Finally, we highlight how cholesterol accumulation, its deprivation, or cholesterol metabolites contribute to modulating cell orchestration during inflammation, induction of an adaptive immune response, as well as to dampening an anti-tumor immune response.


Assuntos
Colesterol/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Membrana Celular/metabolismo , Doença , Humanos , Modelos Biológicos , Receptores de Quimiocinas/química , Transdução de Sinais
10.
J Leukoc Biol ; 99(6): 993-1007, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26819318

RESUMO

The homeostatic chemokines CCL19 and CCL21 and their common cognate chemokine receptor CCR7 orchestrate immune cell trafficking by eliciting distinct signaling pathways. Here, we demonstrate that human CCR7 is N-glycosylated on 2 specific residues in the N terminus and the third extracellular loop. Conceptually, CCR7 glycosylation adds steric hindrance to the receptor N terminus and extracellular loop 3, acting as a "swinging door" to regulate receptor sensitivity and cell migration. We found that freshly isolated human B cells, as well as expanded T cells, but not naïve T cells, express highly sialylated CCR7. Moreover, we identified that human dendritic cells imprint T cell migration toward CCR7 ligands by secreting enzymes that deglycosylate CCR7, thereby boosting CCR7 signaling on T cells, permitting enhanced T cell locomotion, while simultaneously decreasing receptor endocytosis. In addition, dendritic cells proteolytically convert immobilized CCL21 to a soluble form that is more potent in triggering chemotactic movement and does not desensitize the receptor. Furthermore, we demonstrate that soluble CCL21 functionally resembles neither the CCL19 nor the CCL21 phenotype but acts as a chemokine with unique features. Thus, we advance the concept of dendritic cell-dependent generation of micromilieus and lymph node conditioning by demonstrating a novel layer of CCR7 regulation through CCR7 sialylation. In summary, we demonstrate that leukocyte subsets express distinct patterns of CCR7 sialylation that contribute to receptor signaling and fine-tuning chemotactic responses.


Assuntos
Quimiotaxia , Endocitose , Receptores CCR7/metabolismo , Transdução de Sinais , Asparagina/metabolismo , Sítios de Ligação , Comunicação Celular , Linhagem Celular , Quimiocina CCL19 , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Glicosilação , Humanos , Proteínas Imobilizadas/metabolismo , Ligantes , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Solubilidade , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...