Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477724

RESUMO

The nucleoside analog remdesivir (RDV) is an FDA-approved antiviral for the treatment of SARS- CoV-2 infections, and as such it is critical to understand potential genetic determinants and barriers to RDV resistance. In this study, SARS-CoV-2 was subjected to 13 passages in cell culture with increasing concentrations of GS-441524, the parent nucleoside of RDV. At passage 13 the RDV resistance of the lineages ranged from 2.7-to 10.4-fold increase in EC50. Sequence analysis of the three lineage populations identified non-synonymous mutations in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two of the three lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first then combined with S759A. Introduction of the S759A and V792I substitutions at homologous nsp12 positions in viable isogenic clones of the betacoronavirus murine hepatitis virus (MHV) demonstrated their transferability across CoVs, up to 38-fold RDV resistance in combination, and a significant replication defect associated with their introduction. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a [~]10- fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, while nsp12-V792I diminished the UTP concentration needed to overcome the template-dependent inhibition associated with RDV. The in vitro selected substitutions here identified were rare or not detected in the >6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in various clinical settings. One Sentence SummarySARS-CoV-2 develops in vitro resistance to remdesivir by distinct and complementary mutations and mechanisms in the viral polymerase

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-145920

RESUMO

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-064279

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 M). Weaker activity was observed in Vero E6 cells (EC50 = 1.65 M) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-057786

RESUMO

Coronaviruses (CoVs) emerge as zoonoses and cause severe disease in humans, demonstrated by the SARS-CoV-2 (COVID-19) pandemic. RNA recombination is required during normal CoV replication for subgenomic mRNA (sgmRNA) synthesis and generates defective viral genomes (DVGs) of unknown function. However, the determinants and patterns of CoV recombination are unknown. Here, we show that divergent {beta}-CoVs SARS-CoV-2, MERS-CoV, and murine hepatitis virus (MHV) perform extensive RNA recombination in culture, generating similar patterns of recombination junctions and diverse populations of DVGs and sgmRNAs. We demonstrate that the CoV proofreading nonstructural protein (nsp14) 3-to-5 exoribonuclease (nsp14-ExoN) is required for normal CoV recombination and that its genetic inactivation causes significantly decreased frequency and altered patterns of recombination in both infected cells and released virions. Thus, nsp14-ExoN is a key determinant of both high fidelity CoV replication and recombination, and thereby represents a highly-conserved and vulnerable target for virus inhibition and attenuation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...