Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(24): 6484-6487, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099779

RESUMO

We demonstrate a continuously tunable mid-infrared source that produces narrowband radiation at 1981 nm and 2145 nm based on a tunable Yb-based hybrid MOPA pump and a backward-wave optical parametric oscillator (BWOPO). The BWOPO employs a PPRKTP crystal with 580 nm domain periodicity. The BWOPO has a record-low oscillation threshold of 19.2 MW/cm2 and generates mJ level output with an overall efficiency exceeding 70%, reaching an average power of 5.65W at the repetition rate of 5 kHz. The system is mechanically robust and optical cavity-free, making it suitable for spectroscopic systems on mobile platforms. The mid-infrared signal frequency is tuned by pump tuning with a linear pump-to-signal frequency translation rate close to the predicted 1 to 1.001 Hz/Hz.

2.
Opt Express ; 31(15): 24320-24327, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475262

RESUMO

A stable, narrow-bandwidth (274 MHz) backward wave optical parametric oscillator (BWOPO) generating mJ-level backward signal at 1885nm and forward idler at 2495 nm is presented. The BWOPO was pumped by a single-longitudinal mode, Q-switched Nd:YAG high-energy laser at 1064 nm. We show that multi-transversal mode pumping leads to the spectral broadening of the BWOPO backward signal and the generation of nanosecond pulses 2.7 times above the Fourier transform limit. We demonstrate over 100 GHz continuous tuning of the parametric output by adjusting the temperature of the BWOPO crystal, showcasing the significant role of thermal expansion in tuning performance. The BWOPO signal was used as a seed for a single-stage PPRKTP optical parametric amplifier (OPA) to boost the narrowband signal and idler energies to 20 mJ. This combination of mJ-level BWOPO seed with a single-stage PPRKTP OPA comprises a simple concept that would benefit long-range differential absorption lidar (DIAL) in the near and mid-infrared regions.

3.
Sci Rep ; 13(1): 5843, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037875

RESUMO

Similar to x-ray imaging, THz imaging will require high power and high resolution to advance relevant applications. Previously demonstrated THz imaging usually experiences one or several difficulties in insufficient source power, poor spectral tunability, or limited resolution from a low-wavelength source. A short-wavelength radiation source in the 5-10 THz is relatively scarce. Although a shorter wavelength improves imaging resolution, widely used imaging sensors, such as microbolometers, Schottky diodes, and photoconductive antennas, are usually not sensitive to detect radiation with frequencies above 5 THz. The radiation power of a high-frequency source becomes a key factor to realize low-noise and high-resolution imaging by using an ordinary pyroelectric detector. Here, we report a successful development of a fully coherent, tunable, > 100-kW-peak-power parametric source at 5.7 THz. It is then used together with a low-cost pyroelectric detector for demonstrating high-resolution 5.7-THz imaging in comparison with 2-THz imaging. To take advantage of the wavelength tunability of the source, we also report spectrally resolved imaging between 5.55 and 5.87 THz to reveal the spectroscopic characteristics and spatial distribution of a test drug, Aprovel.

4.
Opt Express ; 30(12): 20605-20613, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224801

RESUMO

Electrical corona discharge is employed in this work to deposit ions on the surface of an optical fiber, creating a strong electric field that is used for poling. Green laser light propagating in the core frees photocarriers that are displaced by the poling field. The technique presented can induce a higher optical nonlinearity than previously obtained in traditional optical poling with internal metal electrodes. To date, a maximum second order nonlinearity 0.13 pm/V has been achieved for a 15 kV corona discharge bias.

5.
Opt Express ; 30(11): 19805-19811, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221747

RESUMO

In this work, we demonstrate a spot-welding method for fabrication of all-silica fiber components. A CO2 laser was used to locally sinter sub-micron silica powders, enabling rigid bonding of optical fiber to glass substrates. The bonding was achieved without inducing any fiber transmission losses. The components showed no sign of deterioration or structural change when heated up to 1100 °C. These single material assemblies are therefore well suited for use in harsh environments where high stability and robustness is required.

6.
Opt Express ; 30(22): 40906-40915, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36299015

RESUMO

A new technique for mode-locking is demonstrated based on two lasers sharing one leg for sum-frequency generation. When the two lasers had equal round trip time one will produce bright pulses and the other dark pulses. Both lasers used Nd:YVO4 as the gain material, but operated at different wavelengths, namely 1064 nm and 1342 nm. In the present configuration, sub-250 ps pulses were generated at a repetition rate of 276 MHz with an output power of 70 mW. With appropriate choice of round trip loss at the two wavelengths it was possible to choose which laser was generating the bright pulses.

7.
Nat Commun ; 13(1): 2680, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562355

RESUMO

The molten core drawing method allows scalable fabrication of novel core fibres with kilometre lengths. With metal and semiconducting components combined in a glass-clad fibre, CO2 laser irradiation was used to write localised structures in the core materials. Thermal gradients in axial and transverse directions allowed the controlled introduction, segregation and chemical reaction of metal components within an initially pure silicon core, and restructuring of heterogeneous material. Gold and tin longitudinal electrode fabrication, segregation of GaSb and Si into parallel layers, and Al doping of a GaSb core were demonstrated. Gold was introduced into Si fibres to purify the core or weld an exposed fibre core to a Si wafer. Ga and Sb introduced from opposite ends of a silicon fibre reacted to form III-V GaSb within the Group IV Si host, as confirmed by structural and chemical analysis and room temperature photoluminescence.

8.
Opt Express ; 30(8): 12474-12483, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472882

RESUMO

We demonstrate the use of the electrooptic effect to control the propagation constant of the guided modes in silicate few mode fibers with internal electrodes. The electrooptic effect induces a perturbation of the fiber's refractive index profile that controls intermodal interference. To increase the electrooptic effect the silicate fibers are poled. The response time is in the nanosecond range.

10.
Sci Rep ; 12(1): 3539, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241725

RESUMO

Microfluidics has emerged rapidly over the past 20 years and has been investigated for a variety of applications from life sciences to environmental monitoring. Although continuous-flow microfluidics is ubiquitous, segmented-flow or droplet microfluidics offers several attractive features. Droplets can be independently manipulated and analyzed with very high throughput. Typically, microfluidics is carried out within planar networks of microchannels, namely, microfluidic chips. We propose that fibers offer an interesting alternative format with key advantages for enhanced optical coupling. Herein, we demonstrate the generation of monodisperse droplets within a uniaxial optofluidic Lab-in-a-Fiber scheme. We combine droplet microfluidics with laser-induced fluorescence (LIF) detection achieved through the development of an optical side-coupling fiber, which we term a periscope fiber. This arrangement provides stable and compact alignment. Laser-induced fluorescence offers high sensitivity and low detection limits with a rapid response time making it an attractive detection method for in situ real-time measurements. We use the well-established fluorophore, fluorescein, to characterize the Lab-in-a-Fiber device and determine the generation of [Formula: see text] 0.9 nL droplets. We present characterization data of a range of fluorescein concentrations, establishing a limit of detection (LOD) of 10 nM fluorescein. Finally, we show that the device operates within a realistic and relevant fluorescence regime by detecting reverse-transcription loop-mediated isothermal amplification (RT-LAMP) products in the context of COVID-19 diagnostics. The device represents a step towards the development of a point-of-care droplet digital RT-LAMP platform.


Assuntos
Dispositivos Lab-On-A-Chip , Vírus/isolamento & purificação , Fluorescência , Lasers
11.
Opt Lett ; 47(5): 1105-1108, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230302

RESUMO

A Nd:YVO4 laser operating at 1064 nm generating a stable mode-locked train of 10 ps-long dark pulses with a 211 MHz repetition rate is presented. The mode-locking relies on a periodic loss modulation produced by intra-cavity sum-frequency mixing with a synchronous bright-pulse train from a mode-locked femtosecond Yb:KYW laser at 1040 nm. A modulation depth of 90% was achieved for the dark pulses, confirmed by cross-correlation measurements. The ultrafast loss modulation injects power into the Nd:YVO4 laser cavity modes beyond the laser gain bandwidth. At proper laser cavity length, the detuning interaction of these modes with the lasing modes leads to the generation of periodic ultrafast transients at frequencies above 1.5 THz.

12.
Appl Opt ; 61(4): 884-889, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35201056

RESUMO

A midinfrared single-photon-counting lidar at 3 µm is presented. The 3 µm photons were upconverted to 790 nm in a periodically poled rubidium-doped KTiOPO4 crystal through intracavity mixing inside a 1064 nm Nd:YVO4 laser and detected using a conventional silicon single-photon avalanche detector (SPAD). The lidar system could distinguish 1 mm deep features on a diffusely reflecting target, limited by the SPAD and time-tagging electronics. This technique could easily be extended to longer wavelengths within the transparency of the nonlinear crystal.

13.
Sci Rep ; 12(1): 404, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013520

RESUMO

In this work, we show that the nonlinear evolution of femtosecond seed pulses with different parameters (temporal and spectral shapes, repetition rate, pulse energy) in an Yb-fiber amplifier leads to gain-managed nonlinear amplification, enabling robust generation of high-peak-power and nearly transform-limited pulses after external compression. We demonstrate a compressed pulse duration of 33 fs with an energy of 80.5 nJ and a peak power of 2.29 MW for a source with a repetition rate of 30 MHz. For a second seed source with a repetition rate of 125 MHz, we obtained a pulse duration of 51 fs with an energy of 22.8 nJ and a peak power of 420 kW. Numerical simulations incorporating rate equations and nonlinear propagation in the amplifier provide evolutions that agree well with the experimental results. The discrepancies in the amplifier's absorption edge appearing at low repetition rates and higher pump powers are attributed to the temperature dependence of the amplifier's gain cross-sections. Here, we experimentally verify this attribution and thus underline the importance of accounting for the fiber core temperature for precise modelling of the short-wavelength spectral edge of the output pulses in nonlinear Yb-fiber amplifiers. We also measure, for the first time, the relative intensity noise of an amplifier operating in the gain-managed nonlinear regime. The measurements reveal a significant contribution of the amplification process to the overall output noise of the system.

14.
Opt Lett ; 46(23): 5990-5993, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851941

RESUMO

We report generation of a visible and near-infrared supercontinuum from a high-gain, ultra-broadband, and mirrorless Raman oscillator in a monolithic KTP crystal. The plane transverse to the pump axis resonates and traps off-axis Stokes waves and their frequency-upconverted components bouncing between two crystal surfaces via total internal reflection. The Raman gain is maximized with the Stokes polarization perpendicular to the plane of reflections. When pumped by a Q-switched Nd:YAG laser, the monolithic oscillator generates quasi-mode-locked Stokes pulses with octave-spanning spectral groups across the visible and near-infrared spectra between 540 and 1800 nm.

15.
Opt Express ; 29(23): 37683-37694, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808835

RESUMO

By generating terahertz pulses in KTP crystals through optical rectification with a pump photon energy varying from below to above the bandgap, we observe a peak of the THz signal at the bandgap energy but also a second one around half the bandgap. This later one is attributed to a two-photon absorption enhanced nonlinearity, which is validated by the similarity of the two-photon absorption coefficient and THz peak amplitude data versus the pump photon energy. A careful analysis of the KTP sample absorption spectral dependence nearby the bandgap demonstrates that KTP is an indirect bandgap crystal, whose absorption below the bandgap involves emission of a phonon related to the symmetric Ti-O stretching vibration, i.e. the ν1 (A1g) mode.

16.
Opt Lett ; 46(4): 741-744, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577503

RESUMO

We demonstrate multi-cycle terahertz (MC-THz) generation in a 15.5 mm long periodically poled rubidium (Rb)-doped potassium titanyl phosphate (Rb:PPKTP) crystal with a poling period of 300 µm. By cryogenically cooling the crystal to 77 K, up to 0.72 µJ terahertz energy is obtained at a frequency of 0.5 THz with a 3 GHz bandwidth. A maximum internal optical-to-terahertz conversion efficiency of 0.16% is achieved, which is comparable with results achieved using periodically poled lithium niobate crystal. Neither photorefractive effects nor damage was observed with up to 900mJ/cm2, showing the great potential of Rb:PPKTP for multi-millijoule-level MC-THz generation.

17.
Opt Express ; 29(1): 111-118, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33362094

RESUMO

In this work, we explore the interrogation of an array of fiber Bragg gratings as part of a laser cavity. A semiconductor optical amplifier in a sigma-shaped fiber cavity provides gain and is gated periodically at a rate that matches the roundtrip time associated with each grating of the array. The interrogator exhibits clear laser properties such as a threshold and linewidth narrowing. Besides improving the signal-to-noise ratio and enabling the re-use of wavelengths, it is found that this interrogation scheme enables monitoring of weak gratings spaced by less than 1 cm. Intracavity grating interrogation studied here is found to be a simple and powerful way to increase the number of sensor points for industrial applications.

18.
Opt Express ; 28(26): 38822-38830, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379442

RESUMO

An ion-exchange process has been developed for periodically poled Rb-doped KTiOPO4 (RKTP) which warrants high efficiency and low loss channel waveguides. The domain stability was investigated, and it was found that domain gratings with uncharged walls could stand the ion-exchange process without deterioration. 3.1 mW of blue second harmonic light was generated from 74 mW of radiation at 940.2 nm coupled into an 8 µm wide and 7 mm long waveguide, corresponding to a normalized conversion efficiency of 115%/Wcm2. Waveguides in PPRKTP open the possibility for stable operation at high optical powers, as well as generating entangled photons at low optical powers, and enable the investigation of novel nonlinear processes such as counter-propagating interactions in a waveguide format.

19.
Opt Lett ; 45(21): 6026-6029, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137060

RESUMO

We worked on a new scheme of quasi-phase matching (QPM) based on the negative first order of the spatial modulation of the sign of the second-order nonlinearity. Applying this scheme in the case of angular-QPM (AQPM) in a biaxial crystal reveals new directions of propagation for efficient parametric frequency conversion as well as "giant" spectral acceptances. The experimental validation is performed in a periodically poled rubidium-doped KTiOPO4 biaxial crystal. This new approach naturally extends to other periodically poled uniaxial crystals such as periodically poled LiNbO3.

20.
Opt Express ; 28(19): 27839-27849, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988068

RESUMO

Grating couplers on thin-film lithium niobate ridge waveguides were designed and fabricated using UV-laser ablation. The calculated coupling efficiency with a sinusoidal grating can be as large as 53% in a 0.5 µm thin film. The maximum grating depth we fabricated was 130nm, limiting the coupling efficiency to a theoretical value of 18%. We fabricated grating couplers on adhered ridge waveguides of 20 µm thickness. Coupling light to waveguides on thin-film lithium niobate is still challenging, and here we present a fast, cheap and reliable fabrication alternative. It will benefit the on-chip testing of integrated components developed on this novel and promising material platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...