Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 77(18): 4846-4857, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684528

RESUMO

The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/ß-catenin activation signature in CD34+ cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of ß-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to ß-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR.


Assuntos
Epigênese Genética , Células-Tronco Mesenquimais/patologia , Síndromes Mielodisplásicas/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Células Tumorais Cultivadas
2.
J Biol Chem ; 292(3): 837-846, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27909050

RESUMO

Clear cell renal cell carcinoma (CCRCC) is an incurable malignancy in advanced stages and needs newer therapeutic targets. Transcriptomic analysis of CCRCCs and matched microdissected renal tubular controls revealed overexpression of NOTCH ligands and receptors in tumor tissues. Examination of the TCGA RNA-seq data set also revealed widespread activation of NOTCH pathway in a large cohort of CCRCC samples. Samples with NOTCH pathway activation were also clinically distinct and were associated with better overall survival. Parallel DNA methylation and copy number analysis demonstrated that both genetic and epigenetic alterations led to NOTCH pathway activation in CCRCC. NOTCH ligand JAGGED1 was overexpressed and associated with loss of CpG methylation of H3K4me1-associated enhancer regions. JAGGED2 was also overexpressed and associated with gene amplification in distinct CCRCC samples. Transgenic expression of intracellular NOTCH1 in mice with tubule-specific deletion of VHL led to dysplastic hyperproliferation of tubular epithelial cells, confirming the procarcinogenic role of NOTCH in vivo Alteration of cell cycle pathways was seen in murine renal tubular cells with NOTCH overexpression, and molecular similarity to human tumors was observed, demonstrating that human CCRCC recapitulates features and gene expression changes observed in mice with transgenic overexpression of the Notch intracellular domain. Treatment with the γ-secretase inhibitor LY3039478 led to inhibition of CCRCC cells in vitro and in vivo In summary, these data reveal the mechanistic basis of NOTCH pathway activation in CCRCC and demonstrate this pathway to a potential therapeutic target.


Assuntos
Neoplasias Renais/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Carcinoma de Células Renais , Ilhas de CpG , Metilação de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Inibidores de Proteases/farmacologia , Receptor Notch1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...