Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579399

RESUMO

The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 µM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.


Assuntos
Antineoplásicos , Antagonistas dos Receptores Histamínicos H3 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Camundongos Endogâmicos BALB C , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834958

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, paclitaxel (PTX) represents the first-line therapy for TNBC; however it presents a hydrophobic behavior and produces severe adverse effects. The aim of this work is to improve the therapeutic index of PTX through the design and characterization of novel nanomicellar polymeric formulations composed of a biocompatible copolymer Soluplus® (S), surface-decorated with glucose (GS), and co-loaded either with histamine (HA, 5 mg/mL) and/or PTX (4 mg/mL). Their micellar size, evaluated by dynamic light scattering, showed a hydrodynamic diameter between 70 and 90 nm for loaded nanoformulations with a unimodal size distribution. Cytotoxicity and apoptosis assays were performed to assess their efficacy in vitro in human MDA-MB-231 and murine 4T1 TNBC cells rendering optimal antitumor efficacy in both cell lines for the nanoformulations with both drugs. In a model of TNBC developed in BALB/c mice with 4T1 cells, we found that all loaded micellar systems reduced tumor volume and that both HA and HA-PTX-loaded SG micelles reduced tumor weight and neovascularization compared with the empty micelles. We conclude that HA-PTX co-loaded micelles in addition to HA-loaded formulations present promising potential as nano-drug delivery systems for cancer chemotherapy.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Paclitaxel , Histamina , Micelas , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Polietilenoglicóis/química , Polímeros , Portadores de Fármacos/química , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...