Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Rep ; 43(5): 114162, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678558

RESUMO

Zebrafish have a lifelong cardiac regenerative ability after damage, whereas mammals lose this capacity during early postnatal development. This study investigated whether the declining expression of growth factors during postnatal mammalian development contributes to the decrease of cardiomyocyte regenerative potential. Besides confirming the proliferative ability of neuregulin 1 (NRG1), interleukin (IL)1b, receptor activator of nuclear factor kappa-Β ligand (RANKL), insulin growth factor (IGF)2, and IL6, we identified other potential pro-regenerative factors, with BMP7 exhibiting the most pronounced efficacy. Bmp7 knockdown in neonatal mouse cardiomyocytes and loss-of-function in adult zebrafish during cardiac regeneration reduced cardiomyocyte proliferation, indicating that Bmp7 is crucial in the regenerative stages of mouse and zebrafish hearts. Conversely, bmp7 overexpression in regenerating zebrafish or administration at post-mitotic juvenile and adult mouse stages, in vitro and in vivo following myocardial infarction, enhanced cardiomyocyte cycling. Mechanistically, BMP7 stimulated proliferation through BMPR1A/ACVR1 and ACVR2A/BMPR2 receptors and downstream SMAD5, ERK, and AKT signaling. Overall, BMP7 administration is a promising strategy for heart regeneration.

2.
Vet Pathol ; : 3009858231209410, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37920996

RESUMO

Immuno-oncology research has brought to light the paradoxical role of immune cells in the induction and elimination of cancer. Programmed cell death protein 1 (PD1), expressed by tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PDL1), expressed by tumor cells, are immune checkpoint proteins that regulate the antitumor adaptive immune response. This study aimed to validate commercially available PDL1 antibodies in canine tissue and then, applying standardized methods and scoring systems used in human pathology, evaluate PDL1 immunopositivity in different types of canine tumors. To demonstrate cross-reactivity, a monoclonal antibody (22C3) and polyclonal antibody (cod. A1645) were tested by western blot. Cross-reactivity in canine tissue cell extracts was observed for both antibodies; however, the polyclonal antibody (cod. A1645) demonstrated higher signal specificity. Canine tumor histotypes were selected based on the human counterparts known to express PDL1. Immunohistochemistry was performed on 168 tumors with the polyclonal anti-PDL1 antibody. Only membranous labeling was considered positive. PDL1 labeling was detected both in neoplastic and infiltrating immune cells. The following tumors were immunopositive: melanomas (17 of 17; 100%), renal cell carcinomas (4 of 17; 24%), squamous cell carcinomas (3 of 17; 18%), lymphomas (2 of 14; 14%), urothelial carcinomas (2 of 18; 11%), pulmonary carcinomas (2 of 20; 10%), and mammary carcinomas (1 of 31; 3%). Gastric (0 of 10; 0%) and intestinal carcinomas (0 of 24; 0%) were negative. The findings of this study suggest that PDL1 is expressed in some canine tumors, with high prevalence in melanomas.

3.
Commun Biol ; 6(1): 1044, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838732

RESUMO

Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.


Assuntos
Citoesqueleto de Actina , Actinas , Núcleo Celular , Movimento Celular/fisiologia , Citosol
4.
Cell Rep Med ; 4(8): 101142, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37557179

RESUMO

EGFR-specific tyrosine kinase inhibitors (TKIs), especially osimertinib, have changed lung cancer therapy, but secondary mutations confer drug resistance. Because other EGFR mutations promote dimerization-independent active conformations but L858R strictly depends on receptor dimerization, we herein evaluate the therapeutic potential of dimerization-inhibitory monoclonal antibodies (mAbs), including cetuximab. This mAb reduces viability of cells expressing L858R-EGFR and blocks the FOXM1-aurora survival pathway, but other mutants show no responses. Unlike TKI-treated patient-derived xenografts, which relapse post osimertinib treatment, cetuximab completely prevents relapses of L858R+ tumors. We report that osimertinib's inferiority associates with induction of mutagenic reactive oxygen species, whereas cetuximab's superiority is due to downregulation of adaptive survival pathways (e.g., HER2) and avoidance of mutation-prone mechanisms that engage AXL, RAD18, and the proliferating cell nuclear antigen. These results identify L858R as a predictive biomarker, which may pave the way for relapse-free mAb monotherapy relevant to a large fraction of patients with lung cancer.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Anticorpos Monoclonais/uso terapêutico , Biomarcadores , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases
5.
Cell Mol Life Sci ; 80(8): 202, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442828

RESUMO

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias , Humanos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Cálcio , Transdução de Sinais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Movimento Celular
6.
Cancers (Basel) ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296932

RESUMO

Extracellular vesicles (EVs) are of great interest to study the cellular mechanisms of cancer development and to diagnose and monitor cancer progression. EVs are a highly heterogeneous population of cell derived particles, which include microvesicles (MVs) and exosomes (EXOs). EVs deliver intercellular messages transferring proteins, lipids, nucleic acids, and metabolites with implications for tumour progression, invasiveness, and metastasis. Epidermal Growth Factor Receptor (EGFR) is a major driver of cancer. Tumour cells with activated EGFR could produce EVs disseminating EGFR itself or its ligands. This review provides an overview of EVs (mainly EXOs and MVs) and their cargo, with a subsequent focus on their production and effects related to EGFR activation. In particular, in vitro studies performed in EGFR-dependent solid tumours and/or cell cultures will be explored, thus shedding light on the interplay between EGFR and EVs production in promoting cancer progression, metastases, and resistance to therapies. Finally, an overview of liquid biopsy approaches involving EGFR and EVs in the blood/plasma of EGFR-dependent tumour patients will also be discussed to evaluate their possible application as candidate biomarkers.

7.
Cancer Discov ; 12(11): 2666-2683, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895872

RESUMO

Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Humanos , Linhagem Celular Tumoral , Replicação do DNA , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Animais , Receptor Tirosina Quinase Axl
8.
Front Oncol ; 12: 831105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664762

RESUMO

ERBB4 is a tyrosine kinase receptor reported to exert both oncogenic and tumor suppressor activities. These paradoxical effects were suggested to stem from different ERBB4 homo-/hetero-dimers and/or isoforms. By stratifying breast cancer patients for clinical and molecular subtypes and ERBB4 mRNA abundance, we here report that higher ERBB4 levels correlate with longer relapse-free survival in breast cancer patients of HER2-enriched and luminal A molecular subtypes, proposing a cancer-protecting role for this receptor in these specific subgroups. We also observed that HER2-enriched breast cancers express intermediate ERBB4 mRNA levels compared to luminal and triple-negative/basal-like subgroups, which displayed the highest and the lowest levels, respectively. Inspired by these clinical data, we tested the activation of ERBB4 by Neuregulins as a potential anticancer strategy for HER2+ breast cancers. To this end, we employed two HER2+ breast cancer cellular models (BT474 and SKBR3), which express intermediate/high and low ERBB4 levels, respectively. Cell proliferation and motility were evaluated on these cellular models following treatments with Neuregulin 1 (NRG1), which activates both ERBB3 and ERBB4, or Neuregulin 4 (NRG4), which specifically activates ERBB4. Both NRG1 and NRG4 were used alone or in combination with anti-ERBB2 neutralizing antibodies, namely trastuzumab and pertuzumab. In vitro treatment with NRG1 on BT474 cells restrained cell growth and reduced the anti-proliferative efficacy of trastuzumab. In contrast, treatment with NRG1 on SKBR3 cells increased cell proliferation and migration, and partially or completely impaired the anti-proliferative/anti-migratory action of trastuzumab and/or pertuzumab. Importantly, in both the cell lines, treatment with NRG4 robustly potentiated the anti-proliferative action of trastuzumab and pertuzumab. Collectively, our data in HER2+ breast cancer cells highlight that NRG1 may exert both pro- and anti-proliferative effects, and may reduce the efficacy of anti-HER2 agents, whereas NRG4 may boost the anti-proliferative effects of anti-ERBB2 agents. We propose a provocative paradigm shift in the field of growth factors in cancer progression, suggesting the administration of ERBB4 ligands, such as Neuregulin 4, as a strategy to improve the efficacy of anti-ERBB2 agents.

9.
Front Cardiovasc Med ; 9: 847012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497981

RESUMO

Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies.

10.
Melanoma Res ; 32(4): 231-240, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579670

RESUMO

Epidemiologic data highlight sex differences in melanoma outcome. A putative role of sex hormones is still under investigation. Very few laboratory investigations have focused on the level of expression of estrogen receptors in melanoma. We evaluated the presence of estrogen receptors alpha (ERα) and beta (ERß) in melanoma specimens from female patients with a previous history of breast carcinoma (BC). Moreover, another group of female patients undergoing ovarian stimulation (OS) were also compared to two control groups matched for age and melanoma staging. The study was performed at the IRCCS Policlinico di Sant'Orsola Hospital's Melanoma Unit from January 2017 to December 2019. The nuclear and cytoplasmatic immunohistochemical staining was evaluated and scored by the percentage of stained tumour cells: 0 (≤20%), 1 (21-50%) or 2 (≥50%). Twenty-eight specimens were analysed. ERß nuclear presence was detected in all cases of women with a history of breast cancer. Cytoplasmatic ERß was clearly expressed with a score of 2 in seven cases. In the respective control group, nuclear and cytoplasmatic ERß expression was much lower. A cytoplasmatic ERα positivity was also detected in almost all cases. In the second group of women who experienced ovarian stimulation for Assisted Reproductive Technology (ART), a lower abundance of nuclear ERs was detected. Conversely, cytoplasmatic ERß and α expression ranged widely. Melanoma of women treated with anti-estrogen therapy is generally more prone to express estrogen receptors compared with women of the same age and CM staging but also compared with women in fertile age with and without a history of OS.


Assuntos
Melanoma , Neoplasias Cutâneas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Projetos Piloto , Receptores de Estrogênio
11.
Cancers (Basel) ; 14(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406375

RESUMO

ERBB3, also known as HER3, is a tyrosine kinase transmembrane receptor of the ERBB family. Upon binding to neuregulin 1 (NRG1), ERBB3 preferentially dimerizes with HER2 (ERBB2), in turn inducing aggressive features in several cancer types. The analysis of a dataset of breast cancer patients unveiled that higher ERBB3 mRNA expression correlates with shorter relapse-free survival in basal-like breast cancers, despite low ERBB3 expression in this breast cancer subtype. Administration of neuregulin 1 beta (NRG1ß) significantly affected neither cellular proliferation nor the basal migratory ability of basal-like/triple-negative quasi-normal MCF10A breast cells, cultured in mono-layer conditions. Furthermore, no significant regulation in cell morphology or in the expression of basal/myoepithelial and luminal markers was observed upon stimulation with NRG1ß. In non-adherent conditions, NRG1ß administration to MCF10A cells did not significantly influence cell survival; however, it robustly induced cell growth as spheroids (3D growth). Intriguingly, a remarkable upregulation of ERBB3 and ERBB2 protein abundance was observed in 3D compared to 2D cell cultures, and NRG1ß-induced 3D cell growth was efficiently prevented by the anti-HER2 monoclonal antibody pertuzumab. Similar results were obtained by the analysis of basal-like/triple-negative breast cancer cellular models, MDA-MB-468 and MDA-MB-231 cells, in which NRG1ß induced anchorage-independent cell growth that in turn was prevented or reduced by the simultaneous administration of anti-HER2 neutralizing antibodies. Finally, the ability of pertuzumab in suppressing NRG1ß-induced 3D growth was also evaluated and confirmed in MCF10A engineered with HER2-overexpression. We suggest that the NRG1/ERBB3/ERBB2 pathway promotes the anchorage-independent growth of basal-like breast cancer cells. Importantly, we provide evidence that ERBB2 neutralization, in particular by pertuzumab, robustly inhibits this process. Our results pave the way towards the development of novel anticancer strategies for basal-like breast cancer patients based on the interception of the NRG1/ERBB3/ERBB2 signaling axis.

12.
J Exp Clin Cancer Res ; 41(1): 113, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351152

RESUMO

BACKGROUND: In the last years, several efforts have been made to classify colorectal cancer (CRC) into well-defined molecular subgroups, representing the intrinsic inter-patient heterogeneity, known as Consensus Molecular Subtypes (CMSs). METHODS: In this work, we performed a meta-analysis of CRC patients stratified into four CMSs. We identified a negative correlation between a high level of anaplastic lymphoma kinase (ALK) expression and relapse-free survival, exclusively in CMS1 subtype. Stemming from this observation, we tested cell lines, patient-derived organoids and mice with potent ALK inhibitors, already approved for clinical use. RESULTS: ALK interception strongly inhibits cell proliferation already at nanomolar doses, specifically in CMS1 cell lines, while no effect was found in CMS2/3/4 groups. Furthermore, in vivo imaging identified a role for ALK in the dynamic formation of 3D tumor spheroids. Consistently, ALK appeares constitutively phosphorylated in CMS1, and it signals mainly through the AKT axis. Mechanistically, we found that CMS1 cells display several copies of ALKAL2 ligand and ALK-mRNAs, suggesting an autocrine loop mediated by ALKAL2 in the activation of ALK pathway, responsible for the invasive phenotype. Consequently, disruption of ALK axis mediates the pro-apoptotic action of CMS1 cell lines, both in 2D and 3D and enhanced cell-cell adhesion and e-cadherin organization. In agreement with all these findings, the ALK signature encompassing 65 genes statistically associated with worse relapse-free survival in CMS1 subtype. Finally, as a proof of concept, the efficacy of ALK inhibition was demonstrated in both patient-derived organoids and in tumor xenografts in vivo. CONCLUSIONS: Collectively, these findings suggest that ALK targeting may represent an attractive therapy for CRC, and CMS classification may provide a useful tool to identify patients who could benefit from this treatment. These findings offer rationale and pharmacological strategies for the treatment of CMS1 CRC.


Assuntos
Quinase do Linfoma Anaplásico , Neoplasias do Colo , Citocinas , Quinase do Linfoma Anaplásico/genética , Animais , Neoplasias do Colo/genética , Citocinas/genética , Humanos , Ligantes , Camundongos , Recidiva Local de Neoplasia
13.
Cell Mol Biol Lett ; 27(1): 20, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236282

RESUMO

BACKGROUND: EGFR targeting is currently the main treatment strategy for metastatic colorectal cancer (mCRC). Results of different clinical trials show that patients with wild-type KRAS and BRAF benefit from anti-EGFR monoclonal antibodies (moAbs) cetuximab (CTX) or panitumumab. Unfortunately, despite initial response, patients soon became refractory. Tumor heterogeneity and multiple escaping routes have been addressed as the main culprit, and, behind genomic alterations already described, changes in signaling pathways induced by drug pressure are emerging as mechanisms of acquired resistance. We previously reported an association between reduced sensitivity to CTX and increased expression of IL-1. However, how IL-1 mediates CTX resistance in mCRC is still unclear. METHODS: Under CTX treatment, the upregulation of IL-1R1 expression and a senescence program in sensitive colorectal cancer (CRC) cell lines is examined over time using qPCR, immunoblotting, and immunofluorescence. RESULTS: In sensitive CRC cells, IL-1 appeared responsible for a CTX-mediated G0 phase arrest. On the contrary, CTX-resistant CRC cells (CXR) maintained high mRNA levels of IL-1R1 and a post-senescence reprogramming, as indicated by increased SNAIL expression. Interestingly, treatment of CXR cells with a recombinant decoy, able to sequester the soluble form of IL-1, pushed CTX-resistant CRC cells back into a stage of senescence, thus blocking their proliferation. Our model suggests a trans-regulatory mechanism mediated by IL-1 on EGFR signaling. By establishing senescence and regulating EGFR activity and expression, IL-1 exposure ultimately bestows resistance. CONCLUSIONS: To sum up, our findings point to the combined blockage of IL-1R and EGFR as a promising therapeutical approach to restore sensitivity to EGFR-targeting monoclonal antibodies.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Interleucina-1/genética , Interleucina-1/farmacologia , Interleucina-1/uso terapêutico , Mutação
14.
Front Cell Dev Biol ; 10: 1083743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712972

RESUMO

Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.

15.
Vet Pathol ; 58(6): 1044-1050, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34128437

RESUMO

Sarcoids are the most common cutaneous tumor of equids and are caused by bovine papillomavirus (BPV). Different clinical subtypes of sarcoids are well characterized clinically but not histologically, and it is not known whether viral activity influences the clinical or histological appearance of the tumors. The aim of this study was to verify whether the development of different clinical types of sarcoids or the presence of certain histological features were associated with BPV distribution within the tumor. The presence of BPV was assessed by polymerase chain reaction (PCR) and visualized in histological sections by chromogenic in situ hybridization (CISH) in 74 equine sarcoids. Furthermore, to better characterize the molecular features of neoplastic cells, immunohistochemistry for S100, smooth muscle actin-α (αSMA), and fibroblast-associated protein-α (FAPα) was performed. The presence of BPV was confirmed in all tissues examined by either or both PCR and CISH (72/74, 97% each). Of 70/74 CISH-positive cases, signal distribution appeared as either diffuse (61/70, 87%) or subepithelial (9/70, 13%); the latter was more frequently observed in the verrucous subtype. However, no statistically significant association was found between clinical subtypes and specific histological features or hybridization pattern. Moreover, CISH signal for BPV was not detected in the epidermis overlying sarcoids nor in the tissue surrounding the neoplasms. By immunohistochemistry, αSMA confirmed the myofibroblastic differentiation of neoplastic cells in 28/74 (38%) sarcoids. Using tissue microarrays, FAPα labelling was observed in neoplastic fibroblasts of all sarcoids, suggesting this marker as a potential candidate for the immunohistochemical diagnosis of sarcoids.


Assuntos
Papillomavirus Bovino 1 , Doenças dos Cavalos , Ácidos Nucleicos , Infecções por Papillomavirus , Neoplasias Cutâneas , Animais , Papillomavirus Bovino 1/genética , DNA Viral , Fibroblastos , Cavalos , Infecções por Papillomavirus/veterinária , Neoplasias Cutâneas/veterinária
16.
PLoS One ; 16(6): e0252907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34101765

RESUMO

Three-dimensional (3D) culture systems like tumor spheroids represent useful in vitro models for drug screening and more broadly for cancer biology research, but the generation of uniform populations of spheroids remains challenging. The possibility to properly characterize spheroid properties would increase the reliability of these models. To address this issue different analysis were combined: i) a new device and relative analytical method for the accurate, simultaneous, and rapid measurement of mass density, weight, and size of spheroids, ii) confocal imaging, and iii) protein quantification, in a clinically relevant 3D model. The LoVo colon cancer cell line forming spheroids, treated with crizotinib (CZB) an ATP-competitive small-molecule inhibitor of the receptor tyrosine kinases, was employed to study and assess the correlation between biophysical and morphological parameters in both live and fixed cells. The new fluidic-based measurements allowed a robust phenotypical characterization of the spheroids structure, offering insights on the spheroids bulk and an accurate measurement of the tumor density. This analysis helps overcome the technical limits of the imaging that hardly penetrates the thickness of 3D structures. Accordingly, we were able to document that CZB treatment has an impact on mass density, which represents a key marker characterizing cancer cell treatment. Spheroid culture is the ultimate technology in drug discovery and the adoption of such precise measurement of the tumor characteristics can represent a key step forward for the accurate testing of treatment's potential in 3D in vitro models.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Neoplasias do Colo/patologia , Crizotinibe/farmacologia , Esferoides Celulares/patologia , Sobrevivência Celular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
17.
Cancers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806465

RESUMO

Colorectal cancer (CRC) is the third most common form of cancer in terms of incidence and the second in terms of mortality worldwide. CRC develops over several years, thus highlighting the importance of early diagnosis. National screening programs based on fecal occult blood tests and subsequent colonoscopy have reduced the incidence and mortality, however improvements are needed since the participation rate remains low and the tests present a high number of false positive results. This review provides an overview of the CRC screening globally and the state of the art in approaches aimed at improving accuracy and participation in CRC screening, also considering the need for gender and age differentiation. New fecal tests and biomarkers such as DNA methylation, mutation or integrity, proteins and microRNAs are explored, including recent investigations into fecal microbiota. Liquid biopsy approaches, involving novel biomarkers and panels, such as circulating mRNA, micro- and long-non-coding RNA, DNA, proteins and extracellular vesicles are discussed. The approaches reported are based on quantitative PCR methods that could be easily applied to routine screening, or arrays and sequencing assays that should be better exploited to describe and identify candidate biomarkers in blood samples.

18.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825489

RESUMO

IL-1 belongs to a family of 11 members and is one of the seven receptor-agonists with pro-inflammatory activity. Beyond its biological role as a regulator of the innate immune response, IL-1 is involved in stress and chronic inflammation, therefore it is responsible for several pathological conditions. In particular, IL-1 is known to exert a critical function in malignancies, influencing the tumor microenvironment and promoting cancer initiation and progression. Thus, it orchestrates immunosuppression recruiting pro-tumor immune cells of myeloid origin. Furthermore, new recent findings showed that this cytokine can be directly produced by tumor cells in a positive feedback loop and contributes to the failure of targeted therapy. Activation of anti-apoptotic signaling pathways and senescence are some of the mechanisms recently proposed, but the role of IL-1 in tumor cells refractory to standard therapies needs to be further investigated.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Interleucina-1alfa/fisiologia , Interleucina-1beta/fisiologia , Neoplasias/patologia , Receptores de Interleucina-1/metabolismo , Animais , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Tolerância Imunológica/imunologia , Ligantes , Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Interleucina-1/antagonistas & inibidores , Microambiente Tumoral
19.
J Adv Res ; 24: 99-107, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32257432

RESUMO

Prevention is essential to reduce Colorectal Cancer (CRC) mortality. We previously reported a panel of four genes: CEACAM6, LGALS4, TSPAN8, COL1A2 (CELTiC) able to discriminate patients with CRC. Here, we assessed the CELTiC panel by quantitative polymerase chain reaction, in the blood of 174 healthy subjects, who resulted negative to the faecal immunochemical test (FITN). Using non-parametric statistic and multinomial logistic models, the FITN were compared to previously analysed subjects: 36 false positive FIT (NFIT), who were negative at colonoscopy, 36 patients with low risk lesions (LR) and 92 patients with high risk lesions or CRC (HR/CRC). FITN showed a significantly lower expression of the four genes when compared to HR/CRC. Moreover, FITN showed a significantly lower expression of TSPAN8 and COL1A2 compared to NFIT and LR patients. The multinomial logistic model confirmed that TSPAN8 alone specifically discriminated FITN from NFIT, LR and HR/CRC, while LGALS4 was able to differentiate FITN from false positive FIT. Finally, ROC curves analysis of the comparisons between FITN and HR/CRC, LR or NFIT reported AUC greater than 0.87, with a sensitivity and specificity of 83% and 76%, respectively. The CELTiC panel was confirmed a useful tool to identify CRC patients and to discriminate false FIT positive subjects.

20.
Cells ; 8(11)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752344

RESUMO

In the last three decades cutaneous melanoma has been widely investigated as a steroid hormone-sensitive cancer. Following this hypothesis, many epidemiological studies have investigated the relationship between estrogens and melanoma. No evidence to date has supported this association due to the great complexity of genetic, external and environmental factors underlying the development of this cancer. Molecular mechanisms through which estrogen and their receptor exert a role in melanoma genesis are still under investigation with new studies increasingly focusing on the discovery of new molecular targets for therapeutic treatments.


Assuntos
Suscetibilidade a Doenças , Melanoma/etiologia , Melanoma/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Animais , Estrogênios/metabolismo , Humanos , Melanoma/epidemiologia , Melanoma/patologia , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...