Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 203(6): 1598-1608, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31427442

RESUMO

NAD+ is an essential cofactor in reduction-oxidation metabolism with impact on metabolic and inflammatory diseases. However, data elucidating the effects of NAD+ on the proinflammatory features of human primary monocytes are scarce. In this study, we explored how NAD+ affects TLR4 and NOD-like receptor with a PYD-domain 3 (NLRP3) inflammasome activation, two key innate immune responses. Human primary monocytes were isolated from buffy coats obtained from healthy individuals. Intracellular NAD+ was manipulated by nicotinamide riboside and the NAMPT inhibitor FK866. Cells were primed with LPS with or without subsequent NLRP3 activation with ATP or cholesterol crystals to analyze the effects of NAD+ levels on TLR4-mediated NF-κB activation and NLRP3 activity, respectively. Cytokine release was quantified, and the downstream signal pathway of TLR4 was investigated with Western blot and proteomic analysis. The impact of sirtuin and PARP inhibition was also explored. Our main findings were: 1) elevated NAD+ enhanced IL-1ß release in LPS-primed human monocytes exposed to ATP in vitro, 2) both NLRP3-dependent and -independent inflammatory responses in LPS-exposed monocytes were inhibited by NAD+ depletion with FK866, 3) the inhibition was not caused by suppression of sirtuins or PARP1, and 4) phosphorylation of several proteins TLR4 signal pathway was inhibited by FK866-mediated NAD+ depletion, specifically TAK1, IKKß, IkBα, MEK 1/2, ERK 1/2, and p38. Hence, we suggest a novel mechanism in which NAD+ affects TLR4 signal transduction. Furthermore, our data challenge previous reports of the interaction between NAD+ and inflammation and question the use of nicotinamide riboside in the therapy of inflammatory disorders.


Assuntos
Inflamassomos/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , NAD/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Humanos , Imunidade Inata/fisiologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fosforilação/fisiologia , Proteômica/métodos
2.
J Neurosci Res ; 93(7): 1045-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25881750

RESUMO

We have proposed that lactate is a "volume transmitter" in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the cerebral neocortex and the hippocampus, where it can be stimulated by physiological concentrations of lactate and by the HCAR1 agonist 3,5-dihydroxybenzoate to reduce cAMP levels. Cerebral HCAR1 is concentrated on the postsynaptic membranes of excitatory synapses and also is enriched at the blood-brain barrier. In synaptic spines and in adipocytes, HCAR1 immunoreactivity is also located on subplasmalemmal vesicular organelles, suggesting trafficking to and from the plasma membrane. Through activation of HCAR1, lactate can act as a volume transmitter that links neuronal activity, cerebral blood flow, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress, and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells.


Assuntos
Encéfalo/metabolismo , Ácido Láctico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...