Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38560735

RESUMO

Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selected stimuli, but this requires expert domain knowledge and biases the procedure towards previously known cell types. In the visual cortex, it is still unknown what functional types exist and how to identify them. Thus, for unbiased identification of the functional cell types in retina and visual cortex, new approaches are needed. Here we propose an optimization-based clustering approach using deep predictive models to obtain functional clusters of neurons using Most Discriminative Stimuli (MDS). Our approach alternates between stimulus optimization with cluster reassignment akin to an expectation-maximization algorithm. The algorithm recovers functional clusters in mouse retina, marmoset retina and macaque visual area V4. This demonstrates that our approach can successfully find discriminative stimuli across species, stages of the visual system and recording techniques. The resulting most discriminative stimuli can be used to assign functional cell types fast and on the fly, without the need to train complex predictive models or show a large natural scene dataset, paving the way for experiments that were previously limited by experimental time. Crucially, MDS are interpretable: they visualize the distinctive stimulus patterns that most unambiguously identify a specific type of neuron.

2.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585748

RESUMO

A recent paper in PLOS Computational Biology (Chari and Pachter, 2023) claimed that t-SNE and UMAP embeddings of single-cell datasets fail to capture true biological structure. The authors argued that such embeddings are as arbitrary and as misleading as forcing the data into an elephant shape. Here we show that this conclusion was based on inadequate and limited metrics of embedding quality. More appropriate metrics quantifying neighborhood and class preservation reveal the elephant in the room: while t-SNE and UMAP embeddings of single-cell data do not represent high-dimensional distances, they can nevertheless provide biologically relevant information.

3.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577688

RESUMO

Before downstream analysis can reveal biological signals in single-cell RNA sequencing data, normalization and variance stabilization are required to remove technical noise. Recently, Pearson residuals based on negative binomial models have been suggested as an efficient normalization approach. These methods were developed for UMI-based sequencing protocols, where unique molecular identifiers (UMIs) help to remove PCR amplification noise by keeping track of the original molecules. In contrast, full-length protocols such as Smart-seq2 lack UMIs and retain amplification noise, making negative binomial models inapplicable. Here, we extend Pearson residuals to such read count data by modeling them as a compound process: we assume that the captured RNA molecules follow the negative binomial distribution, but are replicated according to an amplification distribution. Based on this model, we introduce compound Pearson residuals and show that they can be analytically obtained without explicit knowledge of the amplification distribution. Further, we demonstrate that compound Pearson residuals lead to a biologically meaningful gene selection and low-dimensional embeddings of complex Smart-seq2 datasets. Finally, we empirically study amplification distributions across several sequencing protocols, and suggest that they can be described by a broken power law. We show that the resulting compound distribution captures overdispersion and zero-inflation patterns characteristic of read count data. In summary, compound Pearson residuals provide an efficient and effective way to normalize read count data based on simple mechanistic assumptions.

4.
Curr Biol ; 32(3): 545-558.e5, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34910950

RESUMO

In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Horizontais da Retina , Animais , Retroalimentação , Mamíferos , Camundongos , Retina , Células Horizontais da Retina/metabolismo , Sinapses
5.
Genome Biol ; 22(1): 258, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488842

RESUMO

BACKGROUND: Standard preprocessing of single-cell RNA-seq UMI data includes normalization by sequencing depth to remove this technical variability, and nonlinear transformation to stabilize the variance across genes with different expression levels. Instead, two recent papers propose to use statistical count models for these tasks: Hafemeister and Satija (Genome Biol 20:296, 2019) recommend using Pearson residuals from negative binomial regression, while Townes et al. (Genome Biol 20:295, 2019) recommend fitting a generalized PCA model. Here, we investigate the connection between these approaches theoretically and empirically, and compare their effects on downstream processing. RESULTS: We show that the model of Hafemeister and Satija produces noisy parameter estimates because it is overspecified, which is why the original paper employs post hoc smoothing. When specified more parsimoniously, it has a simple analytic solution equivalent to the rank-one Poisson GLM-PCA of Townes et al. Further, our analysis indicates that per-gene overdispersion estimates in Hafemeister and Satija are biased, and that the data are in fact consistent with the overdispersion parameter being independent of gene expression. We then use negative control data without biological variability to estimate the technical overdispersion of UMI counts, and find that across several different experimental protocols, the data are close to Poisson and suggest very moderate overdispersion. Finally, we perform a benchmark to compare the performance of Pearson residuals, variance-stabilizing transformations, and GLM-PCA on scRNA-seq datasets with known ground truth. CONCLUSIONS: We demonstrate that analytic Pearson residuals strongly outperform other methods for identifying biologically variable genes, and capture more of the biologically meaningful variation when used for dimensionality reduction.


Assuntos
Algoritmos , Bases de Dados Genéticas , RNA-Seq , Análise de Sequência de RNA , Organogênese/genética , Análise de Componente Principal , Análise de Regressão , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...