Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Comput Struct Biotechnol J ; 23: 1522-1533, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38633385

RESUMO

The complex relationships between gastrointestinal (GI) nematodes and the host gut microbiota have been implicated in key aspects of helminth disease and infection outcomes. Nevertheless, the direct and indirect mechanisms governing these interactions are, thus far, largely unknown. In this proof-of-concept study, we demonstrate that the excretory-secretory products (ESPs) and extracellular vesicles (EVs) of key GI nematodes contain peptides that, when recombinantly expressed, exert antimicrobial activity in vitro against Bacillus subtilis. In particular, using time-lapse microfluidics microscopy, we demonstrate that exposure of B. subtilis to a recombinant saposin-domain containing peptide from the 'brown stomach worm', Teladorsagia circumcincta, and a metridin-like ShK toxin from the 'barber's pole worm', Haemonchus contortus, results in cell lysis and significantly reduced growth rates. Data from this study support the hypothesis that GI nematodes may modulate the composition of the vertebrate gut microbiota directly via the secretion of antimicrobial peptides, and pave the way for future investigations aimed at deciphering the impact of such changes on the pathophysiology of GI helminth infection and disease.

2.
Trends Immunol ; 45(4): 225-227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538486

RESUMO

Snakebite envenomings kill ~100 000 victims each year and leave many more with permanent sequelae. Antivenoms have been available for more than 125 years but are in need of innovation. A new study by Khalek et al. highlights broadly neutralizing human monoclonal antibodies (mAbs) that might be used to develop recombinant antivenoms with superior therapeutic benefits.


Assuntos
Antivenenos , Mordeduras de Serpentes , Humanos , Animais , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Serpentes
3.
Bioinform Adv ; 4(1): vbae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425781

RESUMO

Summary: High-throughput sequencing (HTS) offers a modern, fast, and explorative solution to unveil the full potential of display techniques, like antibody phage display, in molecular biology. However, a significant challenge lies in the processing and analysis of such data. Furthermore, there is a notable absence of open-access user-friendly software tools that can be utilized by scientists lacking programming expertise. Here, we present ExpoSeq as an easy-to-use tool to explore, process, and visualize HTS data from antibody discovery campaigns like an expert while only requiring a beginner's knowledge. Availability and implementation: The pipeline is distributed via GitHub and PyPI, and it can either be installed as a package with pip or the user can choose to clone the repository.

4.
Protein Sci ; 33(3): e4901, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358130

RESUMO

Broadly-neutralizing monoclonal antibodies are becoming increasingly important tools for treating infectious diseases and animal envenomings. However, designing and developing broadly-neutralizing antibodies can be cumbersome using traditional low-throughput iterative protein engineering methods. Here, we present a new high-throughput approach for the standardized discovery of broadly-neutralizing monoclonal antibodies relying on phage display technology and consensus antigens representing average sequences of related proteins. We showcase the utility of this approach by applying it to toxic sphingomyelinases from the venoms of species from very distant orders of the animal kingdom, the recluse spider and Gadim scorpion. First, we designed a consensus sphingomyelinase and performed three rounds of phage display selection, followed by DELFIA-based screening and ranking, and benchmarked this to a similar campaign involving cross-panning against recombinant versions of the native toxins. Second, we identified two scFvs that not only bind the consensus toxins, but which can also neutralize sphingomyelinase activity of native whole venom in vitro. Finally, we conclude that the phage display campaign involving the use of the consensus toxin was more successful in yielding cross-neutralizing scFvs than the phage display campaign involving cross-panning.


Assuntos
Esfingomielina Fosfodiesterase , Venenos de Aranha , Animais , Aranha Marrom Reclusa , Escorpiões , Anticorpos Amplamente Neutralizantes , Consenso , Anticorpos Monoclonais
5.
Nat Commun ; 15(1): 173, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228619

RESUMO

Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.


Assuntos
Bothrops , Neurotoxinas , Camundongos , Animais , Humanos , Neurotoxinas/toxicidade , Bothrops asper , Anticorpos Facilitadores , Anticorpos Monoclonais/toxicidade
6.
Toxicon ; 239: 107613, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38218383

RESUMO

Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Receptores Nicotínicos , Toxinas Biológicas , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Três Dedos , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Receptores Nicotínicos/metabolismo , Peçonhas , Venenos Elapídicos/química
7.
Sci Rep ; 14(1): 2567, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296989

RESUMO

Bothrops and Lachesis are two of Brazil's medically most relevant snake genera, causing tens of thousands of bites annually. Fortunately, Brazil has good accessibility to high-quality antivenoms at the genus and inter-genus level, enabling the treatment of many of these envenomings. However, the optimal use of these treatments requires that the snake species responsible for the bite is determined. Currently, physicians use a syndromic approach to diagnose snakebite, which can be difficult for medical personnel with limited training in clinical snakebite management. In this work, we have developed a novel monoclonal antibody-based multiplex lateral flow assay for differentiating Bothrops and Lachesis venoms within 15 min. The test can be read by the naked eye or (semi)-quantitatively by a smartphone supported by a 3D-printed attachment for controlling lighting conditions. The LFA can detect Bothrops and Lachesis venoms in spiked plasma and urine matrices at concentrations spanning six orders of magnitude. The LFA has detection limits of 10-50 ng/mL in spiked plasma and urine, and 50-500 ng/mL in spiked sera, for B. atrox and L. muta venoms. This test could potentially support medical personnel in correctly diagnosing snakebite envenomings at the point-of-care in Brazil, which may help improve patient outcomes and save lives.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/uso terapêutico , Antivenenos/uso terapêutico , Venenos de Crotalídeos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico
8.
Toxicon ; 238: 107559, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113945

RESUMO

Protein structure determination is a critical aspect of biological research, enabling us to understand protein function and potential applications. Recent advances in deep learning and artificial intelligence have led to the development of several protein structure prediction tools, such as AlphaFold2 and ColabFold. However, their performance has primarily been evaluated on well-characterised proteins and their ability to predict sturtctures of proteins lacking experimental structures, such as many snake venom toxins, has been less scrutinised. In this study, we evaluated three modelling tools on their prediction of over 1000 snake venom toxin structures for which no experimental structures exist. Our findings show that AlphaFold2 (AF2) performed the best across all assessed parameters. We also observed that ColabFold (CF) only scored slightly worse than AF2, while being computationally less intensive. All tools struggled with regions of intrinsic disorder, such as loops and propeptide regions, and performed well in predicting the structure of functional domains. Overall, our study highlights the importance of exercising caution when working with proteins with no experimental structures available, particularly those that are large and contain flexible regions. Nonetheless, leveraging computational structure prediction tools can provide valuable insights into the modelling of protein interactions with different targets and reveal potential binding sites, active sites, and conformational changes, as well as into the design of potential molecular binders for reagent, diagnostic, or therapeutic purposes.


Assuntos
Inteligência Artificial , Venenos de Serpentes , Sítios de Ligação , Furilfuramida , Proteínas/química , Venenos de Serpentes/química
9.
Sci Rep ; 13(1): 21662, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066189

RESUMO

Snakebite envenoming is a global public health issue that causes significant morbidity and mortality, particularly in low-income regions of the world. The clinical manifestations of envenomings vary depending on the snake's venom, with paralysis, haemorrhage, and necrosis being the most common and medically relevant effects. To assess the efficacy of antivenoms against dermonecrosis, a preclinical testing approach involves in vivo mouse models that mimic local tissue effects of cytotoxic snakebites in humans. However, current methods for assessing necrosis severity are time-consuming and susceptible to human error. To address this, we present the Venom Induced Dermonecrosis Analysis tooL (VIDAL), a machine-learning-guided image-based solution that can automatically identify dermonecrotic lesions in mice, adjust for lighting biases, scale the image, extract lesion area and discolouration, and calculate the severity of dermonecrosis. We also introduce a new unit, the dermonecrotic unit (DnU), to better capture the complexity of dermonecrosis severity. Our tool is comparable to the performance of state-of-the-art histopathological analysis, making it an accessible, accurate, and reproducible method for assessing dermonecrosis in mice. Given the urgent need to address the neglected tropical disease that is snakebite, high-throughput technologies such as VIDAL are crucial in developing and validating new and existing therapeutics for this debilitating disease.


Assuntos
Mordeduras de Serpentes , Peçonhas , Humanos , Camundongos , Animais , Mordeduras de Serpentes/terapia , Antivenenos/farmacologia , Saúde Global , Necrose
10.
Artigo em Inglês | MEDLINE | ID: mdl-38116472

RESUMO

Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.

11.
Toxicon ; 234: 107307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783315

RESUMO

Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.


Assuntos
Mordeduras de Serpentes , Animais , Humanos , Peçonhas , Anticorpos Monoclonais , Antivenenos/farmacologia , Serpentes , Fosfolipases A2 , Venenos de Serpentes
12.
Protein Sci ; 32(12): e4821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897425

RESUMO

Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.


Assuntos
Bacteriófagos , Histidina , Histidina/metabolismo , Antígenos/metabolismo , Imunoglobulina G/genética , Concentração de Íons de Hidrogênio , Bacteriófagos/metabolismo , Biblioteca de Peptídeos
13.
Biochem Pharmacol ; 216: 115758, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604290

RESUMO

Snakebite envenoming is a neglected tropical disease that causes over 100,000 deaths annually. Envenomings result in variable pathologies, but systemic neurotoxicity is among the most serious and is currently only treated with difficult to access and variably efficacious commercial antivenoms. Venom-induced neurotoxicity is often caused by α-neurotoxins antagonising the muscle-type nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel. Discovery of therapeutics targeting α-neurotoxins is hampered by relying on binding assays that do not reveal restoration of receptor activity or more costly and/or lower throughput electrophysiology-based approaches. Here, we report the validation of a screening assay for nAChR activation using immortalised TE671 cells expressing the γ-subunit containing muscle-type nAChR and a fluorescent dye that reports changes in cell membrane potential. Assay validation using traditional nAChR agonists and antagonists, which either activate or block ion fluxes, was consistent with previous studies. We then characterised antagonism of the nAChR by a variety of elapid snake venoms that cause muscle paralysis in snakebite victims, before defining the toxin-inhibiting activities of commercial antivenoms, and new types of snakebite therapeutic candidates, namely monoclonal antibodies, decoy receptors, and small molecules. Our findings show robust evidence of assay uniformity across 96-well plates and highlight the amenability of this approach for the future discovery of new snakebite therapeutics via screening campaigns. The described assay therefore represents a useful first-step approach for identifying α-neurotoxins and their inhibitors in the context of snakebite envenoming, and it should provide wider value for studying modulators of nAChR activity from other sources.


Assuntos
Receptores Nicotínicos , Mordeduras de Serpentes , Humanos , Receptores Nicotínicos/metabolismo , Neurotoxinas/toxicidade , Neurotoxinas/química , Mordeduras de Serpentes/tratamento farmacológico , Antivenenos/farmacologia , Venenos Elapídicos/química , Músculos/metabolismo
14.
Sci Rep ; 13(1): 10181, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349546

RESUMO

Antibodies with cross-reactive binding and broad toxin-neutralizing capabilities are advantageous for treating indications such as infectious diseases and animal envenomings. Such antibodies have been successfully selected against closely related antigens using phage display technology. However, the mechanisms driving antibody cross-reactivity typically remain to be elucidated. Therefore, we sought to explore how a previously reported phage display-based cross-panning strategy drives the selection of cross-reactive antibodies using seven different snake toxins belonging to three protein (sub-)families: phospholipases A2, long-chain α-neurotoxins, and short-chain α-neurotoxins. We showcase how cross-panning can increase the chances of discovering cross-reactive single-chain variable fragments (scFvs) from phage display campaigns. Further, we find that the feasibility of discovering cross-reactive antibodies using cross-panning cannot easily be predicted by analyzing the sequence, structural, or surface similarity of the antigens alone. However, when antigens share the (exact) same functions, this seems to increase the chances of selecting cross-reactive antibodies, which may possibly be due to the existence of structurally similar motifs on the antigens.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Animais , Biblioteca de Peptídeos , Neurotoxinas , Antígenos , Bacteriófagos/genética , Venenos de Serpentes
15.
N Biotechnol ; 76: 23-32, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37037303

RESUMO

Phage display technology is a powerful tool for selecting monoclonal antibodies against a diverse set of antigens. Within toxinology, however, it remains challenging to generate monoclonal antibodies against many animal toxins, as they are difficult to obtain from venom. Recombinant toxins have been proposed as a solution to overcome this challenge, but so far, few have been used as antigens to generate neutralizing antibodies. Here, we describe the recombinant expression of α-cobratoxin in E. coli and its successful application as an antigen in a phage display selection campaign. From this campaign, an scFv (single-chain variable fragment) was isolated with similar binding affinity to a control scFv generated against the native toxin. The selected scFv recognizes a structural epitope, enabling it to inhibit the interaction between the acetylcholine receptor and the native toxin in vitro. This approach represents the first entirely in vitro antibody selection strategy for generating neutralizing monoclonal antibodies against a snake toxin.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Animais , Anticorpos de Cadeia Única/genética , Epitopos , Biblioteca de Peptídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Monoclonais , Venenos de Serpentes/metabolismo , Bacteriófagos/metabolismo
16.
Trends Biotechnol ; 41(7): 875-886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36774206

RESUMO

Single-domain antibodies (sdAbs) are exceptionally stable fragments derived from the antigen-binding domains of immunoglobulins. They can withstand extreme pH, high temperature, and proteolysis, making them suitable for controlling gastrointestinal (GI) infections in humans and animals. sdAbs may function in their native soluble form, although different derived protein formats and the use of delivery vehicles can be useful for improved oral delivery. We discuss selected examples of the use of orally delivered sdAbs for protecting humans and animals against GI infections caused by pathogenic bacteria, viruses, and parasites. We finally provide perspectives on how sdAbs may be applied industrially and what challenges should be overcome for orally delivered sdAbs to reach the market.


Assuntos
Gastroenteropatias , Anticorpos de Domínio Único , Animais , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Gastroenteropatias/microbiologia , Gastroenteropatias/terapia
17.
Nat Commun ; 14(1): 682, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755049

RESUMO

Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.


Assuntos
Venenos Elapídicos , Neurotoxinas , Humanos , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Elapidae , Antivenenos , Anticorpos Monoclonais
18.
MAbs ; 15(1): 2171248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823021

RESUMO

Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Descoberta de Drogas/métodos , Anticorpos Monoclonais
20.
J. venom. anim. toxins incl. trop. dis ; 29: e20230057, 2023. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1528977

RESUMO

Abstract Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.


Assuntos
Mordeduras de Serpentes/tratamento farmacológico , Antivenenos/uso terapêutico , Serpentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...