Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 971757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246118

RESUMO

Excessive fluid loss triggered by hyperbaric pressure, water immersion and hot water suits causes saturation divers to be at risk of dehydration. Dehydration is associated with reductions in mental and physical performance, resulting in less effective work and an increased risk of work-related accidents. In this study we examined the hydration status of 11 male divers over 19 days of a commercial saturation diving campaign to a working depth of 74 m, using two non-invasive methods: Bioelectrical impedance analysis (BIA) and urine specific gravity (USG). Measurements were made daily before and after bell runs, and the BIA data was used to calculated total body water (TBW). We found that BIA and USG were weakly negatively correlated, probably reflecting differences in what they measure. TBW was significantly increased after bell runs for all divers, but more so for bellmen than for in-water divers. There were no progressing changes in TBW over the 19-day study period, indicating that the divers' routines were sufficient for maintaining their hydration levels on short and long term.

2.
Front Physiol ; 12: 791525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916964

RESUMO

Health monitoring during offshore saturation diving is complicated due to restricted access to the divers, the desire to keep invasive procedures to a minimum, and limited opportunity for laboratory work onboard dive support vessels (DSV). In this pilot study, we examined whether measuring salivary biomarkrers in samples collected by the divers themselves might be a feasible approach to environmental stress assessment. Nine saturation divers were trained in the passive drool method for saliva collection and proceeded to collect samples at nine time points before, during, and after an offshore commercial saturation diving campaign. Samples collected within the hyperbaric living chambers were decompressed and stored frozen at -20°C onboard the DSV until they were shipped to land for analysis. Passive drool samples were collected without loss and assayed for a selection of salivary biomarkers: secretory immunoglobulin A (SIgA), C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukins IL-6, IL-8, IL-1ß, as well as cortisol and alpha-amylase. During the bottom phase of the hyperbaric saturation, SIgA, CRP, TNF-α, IL-8 and IL-1ß increased significantly, whereas IL-6, cortisol and alpha-amylase were unchanged. All markers returned to pre-dive levels after the divers were decompressed back to surface pressure. We conclude that salivary biomarker analysis may be a feasible approach to stress assessment in offshore saturation diving. The results of our pilot test are consonant with an activation of the sympathetic nervous system related to systemic inflammation during hyperbaric and hyperoxic saturation.

3.
Front Physiol ; 12: 702634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721054

RESUMO

Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the divers' health and fitness. Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving. Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the divers' physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as part of the divers' diet, whether to boost antioxidant defenses in bacteria or their host or to improve oxygen transport during saturation diving.

4.
Front Physiol ; 12: 669355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986696

RESUMO

During commercial saturation diving, divers live and work under hyperbaric and hyperoxic conditions. The myriads of bacteria that live in and on the human body must adjust to the resultant hyperbaric stress. In this study, we examined the shifts in bacterial content in the oral cavity of saturation divers, using a metagenomic approach to determine the diversity in the composition of bacterial phyla and genera in saliva from 23 male divers before, during, and immediately after 4 weeks of commercial heliox saturation diving to a working depth of circa 200 m. We found that the bacterial diversity fell during saturation, and there was a change in bacterial composition; with a decrease at the phylum level of obligate anaerobe Fusobacteria, and an increase of the relative abundance of Actinobacteria and Proteobacteria. At the genus level, Fusobacterium, Leptotrichia, Oribacterium, and Veillonella decreased, whereas Neisseria and Rothia increased. However, at the end of the decompression, both the diversity and composition of the microbiota returned to pre-dive values. The results indicate that the hyperoxic conditions during saturation may suppress the activity of anaerobes, leaving a niche for other bacteria to fill. The transient nature of the change could imply that hyperbaric heliox saturation has no lasting effect on the oral microbiota, but it is unknown whether or how a shift in oral bacterial diversity and abundance during saturation might impact the divers' health or well-being.

5.
J Appl Physiol (1985) ; 129(3): 612-625, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702269

RESUMO

Decompression sickness (DCS) is a complex and poorly understood systemic disease with wide interindividual resistance variability. We selectively bred rats with a threefold greater resistance to DCS than standard ones. To investigate possible physiological mechanisms underlying the resistance to DCS, including sex-related differences in these mechanisms, 15 males and 15 females resistant to DCS were compared with aged-matched standard Wistar males (n = 15) and females (n = 15). None of these individuals had been previously exposed to hyperbaric treatment. Comparison of the allelic frequencies of single nucleotide polymorphisms (SNPs) showed a difference of one SNP located on the X chromosome. Compared with nonresistant rats, the neutrophil-to-lymphocyte ratio and the plasmatic activity of coagulation factor X were significantly higher in DCS-resistant individuals regardless of their sex. The maximal relaxation elicited by sodium nitroprusside was lower in DCS-resistant individuals regardless of their sex. Males but not females resistant to DCS exhibited higher neutrophil and lymphocyte counts and higher prothrombin time but lower mitochondrial basal O2 consumption and citrate synthase activity. Principal components analysis showed that two principal components discriminate the DCS-resistant males but not females from the nonresistant ones. These components were loaded with activated partial thromboplastin time, monocyte-to-lymphocyte ratio, prothrombin time, factor X, and fibrinogen for PC1 and red blood cells count and neutrophils count for PC2. In conclusion, the mechanisms that drive the resistance to DCS appear different between males and females; lower coagulation tendency and enhanced inflammatory response to decompression stress might be key for resistance in males. The involvement of these physiological adaptations in resistance to DCS must now be confirmed.NEW & NOTEWORTHY By selective breeding of individuals resistant to decompression sickness (DCS) we previously obtained a rat model of inherited resistance to this pathology. Comparison of these individuals with nonresistant animals revealed differences in leukocyte counts, coagulation, and mitochondrial and vascular functions, but not resistance to oxidative stress. This study also reveals sex-related differences in the physiological changes associated with DCS resistance. A principal components analysis of our data allowed us to discriminate DCS-resistant males from standard ones, but not females. These differences represent possible mechanisms driving resistance to DCS. Although still far from the diver, this opens a pathway to future adaptation of personalized decompression procedures for "DCS-prone" individuals.


Assuntos
Doença da Descompressão , Mergulho , Animais , Coagulação Sanguínea , Descompressão , Feminino , Masculino , Ratos , Ratos Wistar
6.
Front Physiol ; 10: 1494, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866879

RESUMO

Commercial saturation divers must acclimatize to hyperbaric hyperoxia in their work environment, and subsequently readjust to breathing normal air when their period in saturation is over. In this study, we measured hemoglobin (Hb) during and following 4 weeks of heliox saturation diving in order to monitor anemia development and the time for Hb to recover post-saturation. Male commercial saturation divers reported their capillary blood Hb daily, before, and during 28 days of heliox saturation to a working depth of circa 200 m (n = 11), and for 12 days at surface post-saturation (n = 9-7), using HemoCue 201+ Hb devices. Hb remained in normal range during the bottom phase, but fell during the decompression; reaching levels of mild anemia (≤13.6 g/dl) the day after the divers' return to the surface. Hb was significantly lower than the pre-saturation baseline (14.7 ± 1.1 g/dl) on the fifth day post-saturation (12.8 ± 1.8 g/dl, p = 0.028), before reverting to normal after 6-7 days. At the end of the 12-day post-saturation period, Hb was not statistically different from the pre-saturation baseline. The observed Hb changes, although significant, were modest. While we cannot rule out effect of other factors, the presence of mild anemia may partially explain the transient fatigue that commercial saturation divers experience post-saturation.

7.
Front Physiol ; 9: 64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545754

RESUMO

Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.

8.
Med Sci Sports Exerc ; 49(12): 2433-2438, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28731987

RESUMO

INTRODUCTION: Decompression sickness (DCS) is a complex and poorly understood systemic disease caused by inadequate desaturation after a decrease of ambient pressure. Strong variability between individuals is observed for DCS occurrence. This raises questions concerning factors that may be involved in the interindividual variability of DCS occurrence. This study aimed to experimentally assess the existence of heritable factors involved in DCS occurrence by selectively breeding individuals resistant to DCS from a population stock of Wistar rats. METHODS: Fifty-two male and 52 female Wistar rats were submitted to a simulated air dive known to reliably induce about 63% DCS: compression was performed at 100 kPa·min up to 1000 kPa absolute pressure before a 45-min long stay. Decompression was performed at 100 kPa·min with three decompression stops: 5 min at 200 kPa, 5 min at 160 kPa, and 10 min at 130 kPa. Animals were observed for 1 h to detect DCS symptoms. Individuals without DCS were selected and bred to create a new generation, subsequently subjected to the same hyperbaric protocol. This procedure was repeated up to the third generation of rats. RESULTS: As reported previously, this diving profile induced 67% of DCS, and 33% asymptomatic animals in the founding population. DCS/asymptomatic ratio was not initially different between sexes, although males were heavier than females. In three generations, the outcome of the dive significantly changed from 33% to 67% asymptomatic rats, for both sexes. Interestingly, survival in females increased sooner than in males. CONCLUSIONS: This study offers evidence suggesting the inheritance of DCS resistance. Future research will focus on genetic and physiological comparisons between the initial strain and the new resistant population.


Assuntos
Doença da Descompressão/genética , Mergulho/efeitos adversos , Predisposição Genética para Doença , Animais , Feminino , Masculino , Ratos Wistar , Fatores de Risco , Seleção Artificial , Fatores Sexuais
9.
Proteomics Clin Appl ; 11(9-10)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439981

RESUMO

PURPOSE: Decompression sickness (DCS) is a poorly understood and complex systemic disease caused by inadequate desaturation following a reduction of ambient pressure. A previous proteomic study of ours showed that DCS occurrence but not diving was associated with changes in the plasma proteome in rats, including a dramatic decrease of abundance of the tetrameric form of Transthyretin (TTR). The present study aims to assess the impact on the human blood proteome of a dive inducing significant decompression stress but without inducing DCS symptoms. EXPERIMENTAL DESIGN: Twelve healthy male divers were subjected to a single dive at a depth of 18 m of sea water (msw) with a 47-min bottom time followed by a direct ascent to the surface at a rate of 9 msw/min. Venous blood was collected before the dive as well as 30 min and 2 h following the dive. The plasma proteomes from four individuals were then analyzed by using a two-dimensional electrophoresis-based proteomic strategy. RESULTS: No protein spot showed a significantly changed abundance (fdr< 0.1) between the tested times. CONCLUSION: These results strengthen the hypothesis according to which significant changes of the plasma proteome measurable with two-dimensional electrophoresis may only occur along with DCS symptoms.


Assuntos
Proteínas Sanguíneas/metabolismo , Mergulho/efeitos adversos , Proteômica , Adulto , Doença da Descompressão/sangue , Humanos , Masculino
10.
Proteomics Clin Appl ; 10(5): 614-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27068327

RESUMO

PURPOSE: Decompression sickness (DCS) is a poorly understood systemic disease caused by inadequate desaturation following a reduction in ambient pressure. Although recent studies highlight the importance of circulating factors, the available data are still puzzling. In this study, we aimed to identify proteins and biological pathways involved in the development of DCS in rats. EXPERIMENTAL DESIGN: Eighteen male Sprague-Dawley rats were subjected to a same simulated air dive to 1000 kPa absolute pressure and divided into two groups: no DCS or DCS. A third control group remained at atmospheric pressure. Venous blood was collected after hyperbaric exposure and the plasma proteomes from four individuals per group were analyzed by using a two-dimensional electrophoresis-based proteomic strategy. RESULTS: Quantitative analysis identified nine protein spots with abundances significantly changed (false discovery rate < 0.1) between the tested conditions. Three protein spots, identified as Apolipoprotein A1, Serine Protease Inhibitor A3K (Serpin A3K), and Alpha-1-antiproteinase, appeared increased in DCS animals but displayed only weak changes. By contrast, one protein spot identified as Transthyretin (TTR) dramatically decreased (i.e. quite disappeared) in animals displaying DCS symptoms. Before diving, TTR level was not different in DCS than nondiving group. CONCLUSION: These results may lead to the use of TTR as an early biomarker of DCS.


Assuntos
Doença da Descompressão/sangue , Doença da Descompressão/diagnóstico , Pré-Albumina/genética , Proteoma/genética , Ar , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Biomarcadores/sangue , Doença da Descompressão/fisiopatologia , Mergulho , Diagnóstico Precoce , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Pré-Albumina/metabolismo , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , alfa 1-Antiquimotripsina/sangue , alfa 1-Antiquimotripsina/genética , alfa 1-Antitripsina/sangue , alfa 1-Antitripsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA