Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 76: 105223, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34293430

RESUMO

Physiologically-based kinetic (PBK) models can simulate concentrations of chemicals in tissues over time without animal experiments. Nevertheless, in vivo data are often used to parameterise PBK models. This study aims to illustrate that a combination of kinetic and dynamic readouts from in vitro assays can be used to parameterise PBK models simulating neurologically-active concentrations of xenobiotics. Baclofen, an intrathecally administered drug to treat spasticity, was used as a proof-of-principle xenobiotic. An in vitro blood-brain barrier (BBB) model was used to determine the BBB permeability of baclofen needed to simulate plasma and cerebrospinal concentrations. Simulated baclofen concentrations in individuals and populations of adults and children generally fall within 2-fold of measured clinical study concentrations. Further, in vitro micro-electrode array recordings were used to determine the effect of baclofen on neuronal activity (cell signalling). Using quantitative in vitro-in vivo extrapolations (QIVIVE) corresponding doses of baclofen were estimated. QIVIVE showed that up to 4600 times lower intrathecal doses than oral and intravenous doses induce comparable neurological effects. Most simulated doses were in the range of administered doses. This show that PBK models predict concentrations in the central nervous system for various routes of administration accurately without the need for additional in vivo data.


Assuntos
Baclofeno/administração & dosagem , Agonistas dos Receptores de GABA-B/administração & dosagem , Modelos Biológicos , Relaxantes Musculares Centrais/administração & dosagem , Adulto , Animais , Baclofeno/líquido cefalorraquidiano , Baclofeno/farmacocinética , Bioensaio , Barreira Hematoencefálica/metabolismo , Bovinos , Criança , Técnicas de Cocultura , Simulação por Computador , Eletrodos , Células Endoteliais/metabolismo , Feminino , Agonistas dos Receptores de GABA-B/líquido cefalorraquidiano , Agonistas dos Receptores de GABA-B/farmacocinética , Humanos , Cinética , Masculino , Relaxantes Musculares Centrais/líquido cefalorraquidiano , Relaxantes Musculares Centrais/farmacocinética , Pericitos/metabolismo
2.
J Environ Manage ; 281: 111873, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385900

RESUMO

Chemical pollution impinges on the quality of water systems and the ecosystem services (ESs) they provide. Expression of ESs in monetary units has become an essential tool for sustainable ecosystem management. However, the impact of chemical pollution on ESs is rarely quantified, and ES valuation often focuses on individual services without considering the total services provided by the ecosystem. The purpose of the study was to develop a stepwise approach to quantify the impact of sediment pollution on the total ES value provided by water systems. Thereby, we calculated the total ES value loss as a function of the multi-substance potentially affected fraction of species at the HC50 level (msPAF(HC50)). The function is a combination of relationships between, subsequently: the msPAF(HC50), diversity, productivity and total ES value. Regardless of the inherent differences between terrestrial and aquatic ecosystems, an increase of diversity generally corresponded to an increase in productivity with curvilinear or linear effects. A positive correlation between productivity and total values of ESs of biomes was observed. The combined relationships showed that 1% msPAF(HC50) corresponded to on average 0.5% (0.05-1.40%) of total ES value loss. The ES loss due to polluted sediments in the Waal-Meuse river estuary (the Netherlands) and Flemish waterways (Belgium) was estimated to be 0.3-5 and 0.6-10 thousand 2007$/ha/yr, respectively. Our study presents a novel methodology to assess the impact of chemical exposure on diversity, productivity, and total value that ecosystems provide. With sufficient monitoring data, our generic methodology can be applied for any chemical and region of interest and help water managers make informed decisions on cost-effective measures to remedy pollution. Acknowledging that the ES loss estimates as a function of PAF(HC50) are crude, we explicitly discuss the uncertainties in each step for further development and application of the methodology.


Assuntos
Ecossistema , Água , Bélgica , Poluição Ambiental , Países Baixos
3.
Toxicol Lett ; 337: 78-90, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189831

RESUMO

The input into the QIVIVE and Physiologically-Based kinetic and dynamic models of drug metabolising enzymes performance and their inter-individual differences significantly improve the modelling performance, supporting the development and integration of alternative approaches to animal testing. Bayesian meta-analyses allow generating and integrating statistical distributions with human in vitro metabolism data for quantitative in vitro-in vivo extrapolation. Such data are lacking on glutathione-S-transferases (GSTs). This paper reports for the first time results on the human variability of GST activities in healthy individuals, their tissue localisation and the frequencies of their major polymorphic variants by means of extensive literature search, data collection, data base creation and meta-analysis. A limited number of papers focussed on in vivo GST inter-individual differences in humans. Ex-vivo total GST activity without discriminating amongst isozymes is generally reported, resulting in a high inter-individual variability. The highest levels of cytosolic GSTs in humans are measured in the kidney, liver, adrenal glands and blood. The frequencies of GST polymorphisms for cytosolic isozymes in populations of different geographical ancestry were also presented. Bayesian meta-analyses to derive GST-related uncertainty factors provided uncertain estimates, due to the limited database. Considering the relevance of GST activities and their pivotal role in cellular adaptive response mechanisms to chemical stressors, further studies are needed to identify GST probe substrates for specific isozymes and quantify inter-individual differences.


Assuntos
Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Medição de Risco/métodos , Algoritmos , Animais , Teorema de Bayes , Citosol/enzimologia , Humanos , Isoenzimas/genética , Polimorfismo Genético , Distribuição Tecidual , Toxicocinética , Incerteza
4.
Arch Toxicol ; 94(12): 4055-4065, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037899

RESUMO

In chemical risk assessment, default uncertainty factors are used to account for interspecies and interindividual differences, and differences in toxicokinetics and toxicodynamics herein. However, these default factors come with little scientific support. Therefore, our aim was to develop an in vitro method, using acetylcholinesterase (AChE) inhibition as a proof of principle, to assess both interspecies and interindividual differences in toxicodynamics. Electric eel enzyme and human blood of 20 different donors (12 men/8 women) were exposed to eight different compounds (chlorpyrifos, chlorpyrifos-oxon, phosmet, phosmet-oxon, diazinon, diazinon-oxon, pirimicarb, rivastigmine) and inhibition of AChE was measured using the Ellman method. The organophosphate parent compounds, chlorpyrifos, phosmet and diazinon, did not show inhibition of AChE. All other compounds showed concentration-dependent inhibition of AChE, with IC50s in human blood ranging from 0.2-29 µM and IC20s ranging from 0.1-18 µM, indicating that AChE is inhibited at concentrations relevant to the in vivo human situation. The oxon analogues were more potent inhibitors of electric eel AChE compared to human AChE. The opposite was true for carbamates, pointing towards interspecies differences for AChE inhibition. Human interindividual variability was low and ranged from 5-25%, depending on the concentration. This study provides a reliable in vitro method for assessing human variability in AChE toxicodynamics. The data suggest that the default uncertainty factor of ~ 3.16 may overestimate human variability for this toxicity endpoint, implying that specific toxicodynamic-related adjustment factors can support quantitative in vitro to in vivo extrapolations that link kinetic and dynamic data to improve chemical risk assessment.


Assuntos
Inibidores da Colinesterase/toxicidade , Electrophorus/metabolismo , Testes de Toxicidade , Acetilcolinesterase/sangue , Animais , Teorema de Bayes , Variação Biológica da População , Relação Dose-Resposta a Droga , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/sangue , Humanos , Masculino , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Medição de Risco , Especificidade da Espécie , Toxicocinética , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...