Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA ; 330(10): 941-950, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698562

RESUMO

Importance: Recent reports have suggested that cerebral amyloid angiopathy, a common cause of multiple spontaneous intracerebral hemorrhages (ICHs), may be transmissible through parenteral injection of contaminated cadaveric pituitary hormone in humans. Objective: To determine whether spontaneous ICH in blood donors after blood donation is associated with development of spontaneous ICH in transfusion recipients. Design, Setting, and Participants: Exploratory retrospective cohort study using nationwide blood bank and health register data from Sweden (main cohort) and Denmark (validation cohort) and including all 1 089 370 patients aged 5 to 80 years recorded to have received a red blood cell transfusion from January 1, 1970 (Sweden), or January 1, 1980 (Denmark), until December 31, 2017. Exposures: Receipt of red blood cell transfusions from blood donors who subsequently developed (1) a single spontaneous ICH, (2) multiple spontaneous ICHs, or (3) no spontaneous ICH. Main Outcomes and Measures: Spontaneous ICH in transfusion recipients; ischemic stroke was a negative control outcome. Results: A total of 759 858 patients from Sweden (median age, 65 [IQR, 48-73] years; 59% female) and 329 512 from Denmark (median age, 64 [IQR, 50-73] years; 58% female) were included, with a median follow-up of 5.8 (IQR, 1.4-12.5) years and 6.1 (IQR, 1.5-11.6) years, respectively. Patients who underwent transfusion with red blood cell units from donors who developed multiple spontaneous ICHs had a significantly higher risk of a single spontaneous ICH themselves, compared with patients receiving transfusions from donors who did not develop spontaneous ICH, in both the Swedish cohort (unadjusted incidence rate [IR], 3.16 vs 1.12 per 1000 person-years; adjusted hazard ratio [HR], 2.73; 95% CI, 1.72-4.35; P < .001) and the Danish cohort (unadjusted IR, 2.82 vs 1.09 per 1000 person-years; adjusted HR, 2.32; 95% CI, 1.04-5.19; P = .04). No significant difference was found for patients receiving transfusions from donors who developed a single spontaneous ICH in the Swedish cohort (unadjusted IR, 1.35 vs 1.12 per 1000 person-years; adjusted HR, 1.06; 95% CI, 0.84-1.36; P = .62) nor the Danish cohort (unadjusted IR, 1.36 vs 1.09 per 1000 person-years; adjusted HR, 1.06; 95% CI, 0.70-1.60; P = .73), nor for ischemic stroke as a negative control outcome. Conclusions and Relevance: In an exploratory analysis of patients who received red blood cell transfusions, patients who underwent transfusion with red blood cells from donors who later developed multiple spontaneous ICHs were at significantly increased risk of spontaneous ICH themselves. This may suggest a transfusion-transmissible agent associated with some types of spontaneous ICH, although the findings may be susceptible to selection bias and residual confounding, and further research is needed to investigate if transfusion transmission of cerebral amyloid angiopathy might explain this association.


Assuntos
Angiopatia Amiloide Cerebral , Hemorragia Cerebral , Doenças Transmissíveis , Transfusão de Eritrócitos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doadores de Sangue , Angiopatia Amiloide Cerebral/epidemiologia , Angiopatia Amiloide Cerebral/etiologia , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/etiologia , AVC Isquêmico/etiologia , Estudos Retrospectivos , Transfusão de Eritrócitos/efeitos adversos , Sistema de Registros , Suécia/epidemiologia , Dinamarca/epidemiologia , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Idoso de 80 Anos ou mais , Transplantados , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/transmissão
2.
Neuron ; 111(6): 767-786, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787752

RESUMO

The clinical definition of neurodegenerative diseases is based on symptoms that reflect terminal damage of specific brain regions. This is misleading as it tells little about the initial disease processes. Circuitry failures that underlie the clinical symptomatology are themselves preceded by clinically mostly silent, slowly progressing multicellular processes that trigger or are triggered by the accumulation of abnormally folded proteins such as Aß, Tau, TDP-43, and α-synuclein, among others. Methodological advances in single-cell omics, combined with complex genetics and novel ways to model complex cellular interactions using induced pluripotent stem (iPS) cells, make it possible to analyze the early cellular phase of neurodegenerative disorders. This will revolutionize the way we study those diseases and will translate into novel diagnostics and cell-specific therapeutic targets, stopping these disorders in their early track before they cause difficult-to-reverse damage to the brain.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo
3.
Foods ; 11(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35804800

RESUMO

Market demand for palatable plant-based meat alternatives is on the rise. One of the challenges is formulating products with sensorial characteristics similar to conventional meat. In this study, the effect of myoglobin on the aromatic profile of plant-based meat alternatives was assessed. Plant-based burgers were made with soy-textured protein, supplemented with three levels of myoglobin (0, 0.5 and 1.0%, the latter two mimicking endogenous myoglobin levels in meat), and grilled for 12 min at 250 °C. To evaluate the aromatic profile of the compounds, raw and grilled samples were subjected to headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) analysis was then performed to visualize the interaction between grilling and myoglobin addition, and the effect exerted on the resulting aromatic profile. Myoglobin significantly affected several classes of volatile compounds, either by itself or in conjunction with grilling. A notable increase in aldehydes and a decrease in hydrocarbons were noted after adding myoglobin. As expected, an increase in pyrazines was observed after grilling. The results suggest myoglobin positively influences the aromatic profile of plant-based meat alternatives, contributing to a profile closer to the one of conventional meat.

5.
Lancet Neurol ; 19(10): 872-878, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32949547

RESUMO

Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid ß after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid ß through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid ß might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid ß can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid ß transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/metabolismo , Vigilância da População , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/transmissão , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fatores de Risco
6.
Neuropharmacology ; 169: 107554, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826343

RESUMO

Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct motion states which are governed by short-lived molecular interactions. Critical biochemical reactions between exocytic proteins that occur in the confinement of nanodomains underpin the precise sequence of priming steps which leads to the fusion of vesicles. The advent of super-resolution microscopy techniques has provided the means to visualize individual molecules on the plasma membrane with high spatiotemporal resolution in live cells. These techniques are revealing a highly dynamic nature of the nanoscale organization of the exocytic machinery. In this review, we focus on soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) syntaxin-1, which mediates vesicular fusion. Syntaxin-1 is highly mobile at the plasma membrane, and its inherent speed allows fast assembly and disassembly of syntaxin-1 nanoclusters which are associated with exocytosis. We reflect on recent studies which have revealed the mechanisms regulating syntaxin-1 nanoclustering on the plasma membrane and draw inferences on the effect of synaptic activity, phosphoinositides, N-ethylmaleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and SNARE complex assembly on the dynamic nanoscale organization of syntaxin-1. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Nanopartículas/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Animais , Membrana Celular/química , Humanos , Cadeias de Markov , Nanopartículas/análise , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Sinapses/química , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sintaxina 1/análise
7.
Mol Cell ; 71(5): 689-702.e9, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193096

RESUMO

Hsp90 is an essential chaperone that guards proteome integrity and amounts to 2% of cellular protein. We now find that Hsp90 also has the ability to directly interact with and deform membranes via an evolutionarily conserved amphipathic helix. Using a new cell-free system and in vivo measurements, we show this amphipathic helix allows exosome release by promoting the fusion of multivesicular bodies (MVBs) with the plasma membrane. We dissect the relationship between Hsp90 conformation and membrane-deforming function and show that mutations and drugs that stabilize the open Hsp90 dimer expose the helix and allow MVB fusion, while these effects are blocked by the closed state. Hence, we structurally separated the Hsp90 membrane-deforming function from its well-characterized chaperone activity, and we show that this previously unrecognized function is required for exosome release.


Assuntos
Membrana Celular/metabolismo , Exossomos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Sistema Livre de Células/metabolismo , Drosophila/metabolismo , Feminino , Masculino , Chaperonas Moleculares/metabolismo , Corpos Multivesiculares/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica
8.
Methods Mol Biol ; 1847: 109-119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30129013

RESUMO

Clathrin-mediated endocytosis plays essential roles both during and after development, and loss-of-function mutants affected in this process are mostly not viable. Different approaches have been developed to circumvent this limitation, including resorting to mosaic model organisms. We here describe the use of FLP/FRT-mediated mitotic recombination to generate Drosophila melanogaster having homozygous mutant eyes while the rest of their body is heterozygous. We then present a detailed protocol for assessing the consequences of these loss-of-function mutations on endocytosis in the photoreceptors of living fruit flies by recording electroretinograms.


Assuntos
Clatrina/metabolismo , Drosophila/fisiologia , Endocitose/fisiologia , Mutação , Animais , Animais Geneticamente Modificados , Biomarcadores , Eletrorretinografia , Homozigoto , Células Fotorreceptoras de Vertebrados/fisiologia , Recombinação Genética
10.
Cell Rep ; 22(2): 427-440, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320738

RESUMO

Propofol is the most commonly used general anesthetic in humans. Our understanding of its mechanism of action has focused on its capacity to potentiate inhibitory systems in the brain. However, it is unknown whether other neural mechanisms are involved in general anesthesia. Here, we demonstrate that the synaptic release machinery is also a target. Using single-particle tracking photoactivation localization microscopy, we show that clinically relevant concentrations of propofol and etomidate restrict syntaxin1A mobility on the plasma membrane, whereas non-anesthetic analogs produce the opposite effect and increase syntaxin1A mobility. Removing the interaction with the t-SNARE partner SNAP-25 abolishes propofol-induced syntaxin1A confinement, indicating that syntaxin1A and SNAP-25 together form an emergent drug target. Impaired syntaxin1A mobility and exocytosis under propofol are both rescued by co-expressing a truncated syntaxin1A construct that interacts with SNAP-25. Our results suggest that propofol interferes with a step in SNARE complex formation, resulting in non-functional syntaxin1A nanoclusters.


Assuntos
Anestésicos Gerais/uso terapêutico , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Anestésicos Gerais/farmacologia , Humanos
11.
J Vis Exp ; (131)2018 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29364242

RESUMO

An increasing number of super-resolution microscopy techniques are helping to uncover the mechanisms that govern the nanoscale cellular world. Single-molecule imaging is gaining momentum as it provides exceptional access to the visualization of individual molecules in living cells. Here, we describe a technique that we developed to perform single-particle tracking photo-activated localization microscopy (sptPALM) in Drosophila larvae. Synaptic communication relies on key presynaptic proteins that act by docking, priming, and promoting the fusion of neurotransmitter-containing vesicles with the plasma membrane. A range of protein-protein and protein-lipid interactions tightly regulates these processes and the presynaptic proteins therefore exhibit changes in mobility associated with each of these key events. Investigating how mobility of these proteins correlates with their physiological function in an intact live animal is essential to understanding their precise mechanism of action. Extracting protein mobility with high resolution in vivo requires overcoming limitations such as optical transparency, accessibility, and penetration depth. We describe how photoconvertible fluorescent proteins tagged to the presynaptic protein Syntaxin-1A can be visualized via slight oblique illumination and tracked at the motor nerve terminal or along the motor neuron axon of the third instar Drosophila larva.


Assuntos
Drosophila/fisiologia , Neurotransmissores/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais
12.
Curr Opin Genet Dev ; 44: 38-46, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28213157

RESUMO

Proteome integrity is maintained by a coordinated network of molecular chaperones, by protein degradation machineries and by their regulators. Numerous human pathologies are considered as diseases of compromised protein homeostasis (proteostasis), including neurodegeneration. These are characterized by the accumulation of neuronal protein aggregates and by synaptic defects followed by loss of connectivity and cell death. While this suggests that synaptic terminals are particularly sensitive to proteostasis imbalance, our understanding of protein turnover mechanisms and regulation at the synapse remains limited. Recent reports show that different proteolytic pathways act at synapses, including several forms of autophagy. The role of chaperones in controlling the balance between synaptic protein refolding and degradation and how this complex network regulates neuronal function also begins to be unraveled.


Assuntos
Proteólise , Proteoma/genética , Sinapses/genética , Autofagia/genética , Homeostase/genética , Humanos , Chaperonas Moleculares/genética , Neurônios/metabolismo , Proteoma/metabolismo , Proteostase , Sinapses/metabolismo
14.
Nat Commun ; 8: 13660, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045048

RESUMO

Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Transmissão Sináptica , Sintaxina 1/genética , Animais , Sítios de Ligação , Difusão , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica , Larva/citologia , Larva/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Imagem Molecular/métodos , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Optogenética , Ligação Proteica , Transporte Proteico , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Sintaxina 1/metabolismo , Toxina Tetânica/genética , Toxina Tetânica/metabolismo
15.
Neuron ; 90(1): 11-25, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27054615

RESUMO

Lipids are the most abundant organic compounds in the brain. The brain has a unique lipidome, and changes in lipid concentration, organization, and metabolism are associated with many neuronal diseases. Here, we discuss recent advances in understanding presynaptic membrane lipid organization, centered on illustrative examples of how the lipids themselves regulate membrane trafficking and control protein activity. This insight highlights that presynaptic terminals are membrane-remodeling machines and that cooperation between lipid and protein molecules underlies presynaptic activity.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Endocitose , Exocitose , Humanos , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas SNARE/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
16.
Neuron ; 88(4): 735-48, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26590345

RESUMO

Synapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity.


Assuntos
Autofagia/genética , Proteínas de Choque Térmico HSC70/genética , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Tomografia com Microscopia Eletrônica , Endossomos/metabolismo , Endossomos/ultraestrutura , Escherichia coli , Proteínas de Escherichia coli , Microscopia de Fluorescência , Chaperonas Moleculares , Polimerização , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura
17.
G3 (Bethesda) ; 4(12): 2381-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25298537

RESUMO

Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break-mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (<35 kb) of a MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events.


Assuntos
Drosophila melanogaster/genética , Técnicas de Introdução de Genes , Alelos , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Recombinação Homóloga , Proteínas Serina-Treonina Quinases/genética , Proteínas tau/genética
18.
Microb Cell Fact ; 12: 129, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24369062

RESUMO

BACKGROUND: Decades of work requiring heterologous expression of eukaryotic proteins have shown that no expression system can be considered as the panacea and the appropriate expression strategy is often protein-dependent. In a large number of cases, yeasts have proven to be reliable organisms for heterologous protein expression by combining eukaryotic cellular organization with the ease of use of simpler microorganisms. RESULTS: During this work, a novel promoter system based on the nitrogen catabolite regulation has been developed to produce the general amino acid permease (Gap1) in its natural host, the yeast Saccharomyces cerevisiae. A simple purification protocol was also established that allows to purify milligrams of Gap1 from cells cultivated in a five liters bio-reactor. In order to test the ability of the system to be used for expression of other proteins, the yeast specific transporter of γ-aminobutyric acid (Uga4), a human vesicular transporter of glutamate (Vglut1) and a small secreted glycoprotein (MD-2) were also expressed using the nitrogen catabolite regulation. All proteins were fused to GFP and their presence and localization were confirmed by western blot analysis and fluorescence microscopy. CONCLUSIONS: Our work shows that the nitrogen catabolite repressible GAP1 promoter can be used to obtain high levels of recombinant protein while allowing for large biomass production in S. cerevisiae. This approach can be used to express membrane and soluble proteins from higher eukaryotes (from yeast to human). Therefore, this system stands as a promising alternative to commonly used expression procedure in yeasts.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Transporte Proteico/genética , Saccharomyces cerevisiae/genética
19.
PLoS One ; 8(11): e81791, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303071

RESUMO

We recently reported that duplication of the E3 ubiquitin ligase HUWE1 results in intellectual disability (ID) in male patients. However, the underlying molecular mechanism remains unknown. We used Drosophila melanogaster as a model to investigate the effect of increased HUWE1 levels on the developing nervous system. Similar to the observed levels in patients we overexpressed the HUWE1 mRNA about 2-fold in the fly. The development of the mushroom body and neuromuscular junctions were not altered, and basal neurotransmission was unaffected. These data are in agreement with normal learning and memory in the courtship conditioning paradigm. However, a disturbed branching phenotype at the axon terminals of the dorsal cluster neurons (DCN) was detected. Interestingly, overexpression of HUWE1 was found to decrease the protein levels of dishevelled (dsh) by 50%. As dsh as well as Fz2 mutant flies showed the same disturbed DCN branching phenotype, and the constitutive active homolog of ß-catenin, armadillo, could partially rescue this phenotype, our data strongly suggest that increased dosage of HUWE1 compromises the Wnt/ß-catenin pathway possibly by enhancing the degradation of dsh.


Assuntos
Axônios/metabolismo , Deficiência Intelectual/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Aprendizagem , Memória , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiopatologia , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...