Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MedEdPublish (2016) ; 13: 7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942501

RESUMO

Background: Because of COVID-19, the 2020 written medical examinations were replaced by mandatory formative online assessments. This study aimed to determine students' performance, self-assessment of performance, and perception about the switch from a summative to a formative approach. Methods: Medical students from year 2 to 5 (n=648) were included. They could repeat each test once or twice. They rated their performance after each attempt and were then given their score. Detailed feedback was given at the end of the session. An online survey determined medical students' perception about the reorganization of education. Two items concerned the switch from summative to formative assessments Results: Formative assessments involved 2385 examinees totaling 3197 attempts. Among examinees, 30.8% made at least 2 attempts. Scores increased significantly at the second attempt (median 9.4, IQR 10.8), and duration decreased (median -31.0, IQR 48.0). More than half of examinees (54.6%) underestimated their score, female students more often than male. Low performers overestimated, while high performers underestimated their scores. Students approved of the switch to formative assessments. Stress was lessened but motivation for learning decreased. Conclusions: Medical students' better scores at a second attempt support a benefit of detailed feedback, learning time and re-test opportunity on performance. Decreased learning motivation and a minority of students repeating the formative assessments point to the positive influence of summative assessment on learning.

2.
J Endocrinol ; 258(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256642

RESUMO

Cell protein biosynthesis is regulated by different factors, but implication of intercellular contacts on alpha and beta cell protein biosyntheses activity has not been yet investigated. Islet cell biosynthetic activity is essential in regulating not only the hormonal reserve within cells but also in renewing all the proteins involved in the control of secretion. Here we aimed to assess whether intercellular interactions affected similarly secretion and protein biosynthesis of rat alpha and beta cells. Insulin and glucagon secretion were analyzed by ELISA or reverse hemolytic plaque assay, and protein biosynthesis evaluated at single cell level using bioorthogonal noncanonical amino acid tagging. Regarding beta cells, we showed a positive correlation between insulin secretion and protein biosynthesis. We also observed that homologous contacts increased both activities at low or moderate glucose concentrations. By contrast, at high glucose concentration, homologous contacts increased insulin secretion and not protein biosynthesis. In addition, heterogeneous contacts between beta and alpha cells had no impact on insulin secretion and protein biosynthesis. Regarding alpha cells, we showed that when they were in contact with beta cells, they increased their glucagon secretion in response to a drop of glucose concentration, but, on the other hand, they decreased their protein biosynthesis under any glucose concentrations. Altogether, these results emphasize the role of intercellular contacts on the function of islet cells, showing that intercellular contacts increased protein biosynthesis in beta cells, except at high glucose, and decreased protein biosynthesis in alpha cells even when glucagon secretion is stimulated.


Assuntos
Glucagon , Ilhotas Pancreáticas , Ratos , Animais , Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina , Glucose/metabolismo
4.
Rev Med Suisse ; 18(766): 131-133, 2022 Jan 26.
Artigo em Francês | MEDLINE | ID: mdl-35084140

RESUMO

The COVID-19 pandemics has deeply impacted academic teaching and forced a complete shift to distance learning formats during the first and second waves. Medical education, among other professional training programs, relies also on practical and clinical immersion, while some of these clinical activities had to be postponed. This article analyzes how one medical school was able to maintain its teaching while ensuring clinical training and taking into account the psychological impact imputed to the lockdown. It also highlights the learning opportunities and unprecedented life experiences contributing to the training of tomorrow's physicians.


La pandémie Covid-19 a imposé à l'enseignement, notamment universitaire, le passage complet à des formats à distance durant les première et deuxième vagues. La formation médicale, entre autres, se caractérise par une forte composante pratique et une immersion clinique. Cet article analyse comment une faculté de médecine a pu maintenir son enseignement en assurant au mieux une formation clinique, en tenant compte autant que possible des conséquences psychologiques objectivées par des enquêtes facultaires. Il valorise également les opportunités d'apprentissage et les expériences inédites amenées par la pandémie et leur intégration dans la formation des médecins de demain.


Assuntos
COVID-19 , Educação a Distância , Estudantes de Medicina , Controle de Doenças Transmissíveis , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Estudantes
5.
BMC Med Educ ; 21(1): 620, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915888

RESUMO

BACKGROUND: The unfolding of the COVID-19 pandemic during spring 2020 has disrupted medical education worldwide. The University of Geneva decided to shift on-site classwork to online learning; many exams were transformed from summative to formative evaluations and most clinical activities were suspended. We aimed to investigate the perceived impact of those adaptations by the students at the Faculty of Medicine. METHODS: We sent an online self-administered survey to medical students from years 2 to 6 of the University of Geneva, three months after the beginning of the pandemic. The survey explored students' main activities during the first three months of the pandemic, the impact of the crisis on their personal life, on their training and on their professional identity, the level of stress they experienced and which coping strategies they developed. The survey consisted of open-ended and closed questions and was administered in French. RESULTS: A total of 58.8% of students responded (n = 467) and were homogeneously distributed across gender. At the time of the survey, two thirds of the participants were involved in COVID-19-related activities; 72.5% voluntarily participated, mainly fueled by a desire to help and feel useful. Many participants (58.8%) reported a feeling of isolation encountered since the start of the pandemic. Main coping strategies reported were physical activity and increased telecommunications with their loved ones. Most students described a negative impact of the imposed restrictions on their training, reporting decreased motivation and concentration in an unusual or distraction-prone study environment at home and missing interactions with peers and teachers. Students recruited to help at the hospital in the context of increasing staff needs reported a positive impact due to the enriched clinical exposure. Perceived stress levels were manageable across the surveyed population. If changed, the crisis had a largely positive impact on students' professional identity; most highlighted the importance of the health care profession for society and confirmed their career choice. CONCLUSION: Through this comprehensive picture, our study describes the perceived impact of the pandemic on University of Geneva medical students, their training and their professional identity three months after the start of the pandemic. These results allowed us to gain valuable insight that reinforced the relevance of assessing the evolution of the situation in the long run and the importance of developing institutional support tools for medical students throughout their studies.


Assuntos
COVID-19 , Estudantes de Medicina , Adaptação Psicológica , Humanos , Pandemias , SARS-CoV-2
6.
Islets ; 13(1-2): 1-9, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33616002

RESUMO

This study aimed to assess the global mapping risk of human islet isolation, using a failure mode and effect analysis (FMEA), and highlight the impact of quality assurance procedures on the risk level of criticality. Risks were scored using the risk priority number (RPN) scoring method. The risk level of criticality was made based on RPN and led to risk classification (low to critical). A raw risk analysis and a risk control analysis (with control means and quality assurance performance) were undertaken. The process of human islet isolation was divided into 11 steps, and 230 risks were identified. Analysis of the highest RPN of each of the 11 steps showed that the 4 highest risks were related to the pancreas digestion and islet purification stages. After implementation of reduction measures and controls, critical and severe risks were reduced by 3-fold and by 2-fold, respectively, so that 90% of risks could be considered as low to moderate. FMEA has proven to be a powerful approach for the identification of weaknesses in the islet isolation processes. The results demonstrated the importance of staff qualification and continuous training and supported the contribution of the quality assurance system to risk reduction.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Humanos , Medição de Risco
7.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367617

RESUMO

A correct biosynthetic activity is thought to be essential for the long-term function and survival of islet cells in culture and possibly also after islet transplantation. Compared to the secretory activity, biosynthetic activity has been poorly studied in pancreatic islet cells. Here we aimed to assess biosynthetic activity at the single cell level to investigate if protein synthesis is dependent on secretagogues and increased as a consequence of hormonal secretion. Biosynthetic activity in rat islet cells was studied at the single cell level using O-propargyl-puromycin (OPP) that incorporates into newly translated proteins and chemically ligates to a fluorescent dye by "click" reaction. Heterogeneous biosynthetic activity was observed between the four islet cell types, with delta cells showing the higher relative protein biosynthesis. Beta cells protein biosynthesis was increased in response to glucose while 3-isobutyl-1-methylxanthine and phorbol-12-myristate-13-acetate, 2 drugs known to stimulate insulin secretion, had no similar effect on protein biosynthesis. However, after several hours of secretion, protein biosynthesis remained high even when cells were challenged to basal conditions. These results suggest that mechanisms regulating secretion and biosynthesis in islet cells are different, with glucose directly triggering beta cells protein biosynthesis, independently of insulin secretion. Furthermore, this OPP labeling approach is a promising method to identify newly synthesized proteins under various physiological and pathological conditions.


Assuntos
Glucose/farmacologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Células Cultivadas , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Puromicina/análogos & derivados , Puromicina/farmacologia , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem
8.
Am J Transplant ; 21(4): 1493-1502, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32986297

RESUMO

Many variables impact islet isolation, including pancreas ischemia time. The ischemia time upper limit that should be respected to avoid a negative impact on the isolation outcome is not well defined. We have performed a retrospective analysis of all islet isolations in our center between 2008 and 2018. Total ischemia time, cold ischemia time, and organ removal time were analyzed. Isolation success was defined as an islet yield ≥200 000 IEQ. Of the 452 pancreases included, 288 (64%) were successfully isolated. Probability of isolation success showed a significant decrease after 8 hours of total ischemia time, 7 hours of cold ischemia time, and 80 minutes of organ removal time. Although we observed an impact of ischemia time on islet yield, a probability of isolation success of 50% was still present even when total ischemia time exceeds 12 hours. Posttransplantation clinical outcomes were assessed in 32 recipients and no significant difference was found regardless of ischemia time. These data indicate that although shorter ischemia times are associated with better islet isolation outcomes, total ischemia time >12 hours can provide excellent results in appropriately selected donors.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Soluções para Preservação de Órgãos , Humanos , Isquemia , Pâncreas , Estudos Retrospectivos
10.
Cell Transplant ; 29: 963689720937292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749168

RESUMO

Three-dimensional (3D) cell culture by engineering spheroids has gained increasing attention in recent years because of the potential advantages of such systems over conventional two-dimensional (2D) tissue culture. Benefits include the ability of 3D to provide a more physiologically relevant environment, for the generation of uniform, size-controlled spheroids with organ-like microarchitecture and morphology. In recent years, different techniques have been described for the generation of cellular spheroids. Here, we have compared the efficiency of four different methods of islet cell aggregation. Rat pancreatic islets were dissociated into single cells before reaggregation. Spheroids were generated either by (i) self-aggregation in nonadherent petri dishes, (ii) in 3D hanging drop culture, (iii) in agarose microwell plates or (iv) using the Sphericalplate 5D™. Generated spheroids consisted of 250 cells, except for the self-aggregation method, where the number of cells per spheroid cannot be controlled. Cell function and morphology were assessed by glucose stimulated insulin secretion (GSIS) test and histology, respectively. The quantity of material, labor intensity, and time necessary for spheroid production were compared between the different techniques. Results were also compared with native islets. Native islets and self-aggregated spheroids showed an important heterogeneity in terms of size and shape and were larger than spheroids generated with the other methods. Spheroids generated in hanging drops, in the Sphericalplate 5D™, and in agarose microwell plates were homogeneous, with well-defined round shape and a mean diameter of 90 µm. GSIS results showed improved insulin secretion in response to glucose in comparison with native islets and self-aggregated spheroids. Spheroids can be generated using different techniques and each of them present advantages and inconveniences. For islet cell aggregation, we recommend, based on our results, to use the hanging drop technique, the agarose microwell plates, or the Sphericalplate 5D™ depending on the experiments, the latter being the only option available for large-scale spheroids production.


Assuntos
Técnicas de Cultura de Células/métodos , Ilhotas Pancreáticas/citologia , Animais , Feminino , Imuno-Histoquímica , Transplante das Ilhotas Pancreáticas , Gravidez , Ratos , Ratos Endogâmicos Lew , Esferoides Celulares/citologia
11.
Mol Cell Endocrinol ; 510: 110815, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315719

RESUMO

Syndecans (SDC) are important multifunctional components of the extracellular matrix mainly described in endothelial cells. We studied the expression and regulation of SDC in cultured MIN6B1 cells and pancreatic islets. qRT-PCR revealed that syndecan-4 (SDC4) was the predominant isoform expressed in MIN6B1 cells and islets compared to other forms of SDC. Immunofluorescence in mouse and human pancreas sections revealed that SDC4 is mainly expressed in ß-cells compared to other pancreatic cells. Exposure of MIN6B1 and human islets to IL-1ß dose-dependently induced a rapid and transient expression of SDC4 while SRC and STAT3 inhibitors decreased this effect. Exposure of human islets to Il-1ß caused an increase of SDC4 shedding, however treatment with STAT3 and SRC inhibitors inhibited this effect. These results indicate that SDC4 is upregulated by IL-1ß through the SRC-STAT3 pathway and this pathway is also involved in SDC4 shedding in islets.


Assuntos
Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Sindecana-4/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sindecana-4/genética , Regulação para Cima/genética , Quinases da Família src/metabolismo
12.
Sci Rep ; 10(1): 7011, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332867

RESUMO

Hypoxia, IL-1ß production and oxidative stress are involved in islet graft dysfunction and destruction. However, the link between these events has not yet been determined in transplanted islets. The goal of this study was to determine whether NLRP3 inflammasome is responsible for IL-1ß production and if it is activated by hypoxia-induced oxidative stress in transplanted islets. Rat islets were transplanted under the kidney capsule of immunodeficient mice. At different times post-transplantation, blood samples were collected and islet grafts harvested. Rat islets were also incubated in vitro either under normoxia or hypoxia for 24 h, in the absence or presence of inhibitors of NLRP3 inflammasome (CASP1 inhibitor) or oxidative stress (NAC). NLRP3, CASP1, IL1B, BBC3 pro-apoptotic and BCL2 anti-apoptotic genes in transplanted and in vitro incubated islets were then studied using real time PCR. IL-1ß released in the blood and in the supernatant was quantified by ELISA. Cell death was analysed by propidium iodide and Annexin-V staining. NLRP3, CASP1 and BBC3 in transplanted rat islets and IL-1ß in blood transiently increased during the first days after transplantation. In islets incubated under hypoxia, NRLP3, IL1B and CASP1 and IL-1ß released in supernatant increased compared to islets incubated under normoxia. These effects were prevented by the inhibition of NLRP3 inflammasome by CASP1 or oxidative stress by NAC. However, these inhibitors did not prevent hypoxia-induced rat islet death. These data show that NLRP3 inflammasome in rat islets is transiently activated after their transplantation and induced through oxidative stress in vitro. However, NRLP3 inflammasome inhibition does not protect islet cells against hypoxia.


Assuntos
Inflamassomos/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 1/metabolismo , Morte Celular/genética , Morte Celular/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Interleucina-1beta/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos SCID , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
13.
J Diabetes ; 12(7): 532-541, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32090456

RESUMO

BACKGROUND: Due to the shortage of multi-organ donors, human pancreatic islet transplantation has now been extended to islets originating from obese subjects. In this study, our aim is to compare the respective sensitivity of human islets from lean vs obese donors to chronic high glucose or high palmitate. METHODS: Human islets were isolated from pancreases harvested from brain-dead multi-organ donors. Islets were cultured during 72 hours in the presence of moderate (16.7 mmol/L) or high (28 mmoL/L) glucose concentrations, or glucose (5.6 mmoL/L) and palmitate (0.4 mmoL/L), before measurement of their response to glucose. RESULTS: We first observed a greater insulin response in islets from obese donors under both basal and high-glucose conditions, confirming their hyperresponsiveness to glucose. When islets from obese donors were cultured in the presence of moderate or high glucose concentrations, insulin response to glucose remained unchanged or was slightly reduced, as opposed to that observed in lean subjects. Moreover, culturing islets from obese donors with high palmitate also induced less reduction in insulin response to glucose than in lean subjects. This partial protection of obese islets is associated with less induction of inducible nitric oxide synthase in islets, together with a greater expression of the transcription factor forkhead box O1 (FOXO1). CONCLUSIONS: Our data suggest that in addition to an increased sensitivity to glucose, islets from obese subjects can be considered as more resistant to glucose and fatty acid excursions and are thus valuable candidates for transplantation.


Assuntos
Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Obesidade/metabolismo , Palmitatos/farmacologia , Idoso , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Transpl Int ; 33(6): 675-688, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32003082

RESUMO

Intraportal islet transplantation is plagued by an acute destruction of transplanted islets. Amongst the first responders, NK cells and macrophages harbour an activating receptor, NKG2D, recognizing ligands expressed by stressed cells. We aimed to determine whether islet NKG2D ligand expression increases with culture time, and to analyse the impact of antibody-induced NKG2D blockade in islet transplantation. NKG2D-ligand expression was analysed in rat and human islets. Syngeneic marginal mass intraportal islet transplantations were performed in rats: control group, recipients transplanted with NKG2D-recombinant-treated islets (recombinant group), and recipients treated with a mouse anti-rat anti-NKG2D antibody and transplanted with recombinant-treated islets (antibody-recombinant group). Islets demonstrated increased gene expression of NKG2D ligands with culture time. Blockade of NKG2D on NK cells decreased in vitro cytotoxicity against islets. Recipients from the control and recombinant groups showed similar metabolic results; conversely, treatment with the antibody resulted in lower diabetes reversal. The antibody depleted circulating and liver NK cells in recipients, who displayed increased macrophage infiltration of recipient origin around the transplanted islets. In vitro blockade of NKG2D ligands had no impact on early graft function. Systemic treatment of recipients with an anti-NKG2D antibody was deleterious to the islet graft, possibly through an antibody-dependent cell-mediated cytotoxicity reaction.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Sobrevivência de Enxerto , Fígado , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Ratos
15.
Am J Transplant ; 20(6): 1551-1561, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32031745

RESUMO

Hypoxia is a major cause of considerable islet loss during the early posttransplant period. Here, we investigate whether shielding islets with human amniotic epithelial cells (hAECs), which possess anti-inflammatory and regenerative properties, improves islet engraftment and survival. Shielded islets were generated on agarose microwells by mixing rat islets (RIs) or human islets (HI) and hAECs (100 hAECs/IEQ). Islet secretory function and viability were assessed after culture in hypoxia (1% O2 ) or normoxia (21% O2 ) in vitro. In vivo function was evaluated after transplant under the kidney capsule of diabetic immunodeficient mice. Graft morphology and vascularization were evaluated by immunohistochemistry. Both shielded RIs and HIs show higher viability and increased glucose-stimulated insulin secretion after exposure to hypoxia in vitro compared with control islets. Transplant of shielded islets results in considerably earlier normoglycemia and vascularization, an enhanced glucose tolerance, and a higher ß cell mass. Our results show that hAECs have a clear cytoprotective effect against hypoxic damages in vitro. This strategy improves ß cell mass engraftment and islet revascularization, leading to an improved capacity of islets to reverse hyperglycemia, and could be rapidly applicable in the clinical situation seeing that the modification to HIs are minor.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Células Epiteliais , Sobrevivência de Enxerto , Humanos , Insulina , Camundongos , Ratos
16.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118619, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816355

RESUMO

Chronic exposure to elevated levels of glucose and free fatty acids impairs beta-cell function, leading to insulin secretion defects and eventually beta-cell failure. Using a semi-high throughput approach applied to INS-1E beta-cells, we tested multiple conditions of chronic exposure to basal, intermediate and high glucose, combined with saturated versus mono- and polyunsaturated fatty acids in order to assess cell integrity, lipid metabolism, mitochondrial function, glucose-stimulated calcium rise and secretory kinetics. INS-1E beta-cells were cultured for 3 days at different glucose concentrations (5.5, 11.1, 25 mM) without or with BSA-complexed 0.4 mM saturated (C16:0 palmitate), monounsaturated (C18:1 oleate) or polyunsaturated (C18:2 linoleate, C18:3 linolenate) fatty acids, resulting in 0.1-0.5 µM unbound fatty acids. Accumulation of triglycerides in cells exposed to fatty acids was glucose-dependent, oleate inducing the strongest lipid storage and protecting against glucose-induced cytotoxicity. The combined chronic exposure to both high glucose and either palmitate or oleate altered mitochondrial function as well as glucose-induced calcium rise. This pattern did not directly translate at the secretory level since palmitate and oleate exhibited distinct effects on the first and the second phases of glucose-stimulated exocytosis. Both fatty acids changed the activity of kinases, such as the MODY-associated BLK. Additionally, chronic exposure to fatty acids modified membrane physicochemical properties by increasing membrane fluidity, oleate exhibiting larger effects compared to palmitate. Chronic fatty acids differentially and specifically exacerbated some of the glucotoxic effects, without promoting cytotoxicity on their own. Each of the tested fatty acids functionally modified INS-1E beta-cell, oleate inducing the strongest effects.


Assuntos
Fluidez de Membrana/efeitos dos fármacos , Ácido Oleico/farmacologia , Palmitatos/farmacologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Triglicerídeos/metabolismo
17.
Nat Commun ; 10(1): 4491, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582751

RESUMO

Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Células Epiteliais/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Organoides/transplante , Engenharia Tecidual/métodos , Âmnio/citologia , Animais , Sobrevivência Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Células Epiteliais/transplante , Sobrevivência de Enxerto , Xenoenxertos/irrigação sanguínea , Xenoenxertos/metabolismo , Xenoenxertos/transplante , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos SCID , Organoides/irrigação sanguínea , Organoides/metabolismo , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Esferoides Celulares , Estreptozocina , Técnicas de Cultura de Tecidos/métodos , Transplante Heterólogo/métodos
18.
Diabetes ; 68(8): 1541-1543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31331988

RESUMO

In December 2018, Diabetes and Diabetologia began requiring authors of papers reporting data obtained from studies on human islets to report critical characteristics of the human islets used for research. The islet community was asked to provide feedback on it. Here is the contribution by the European Consortium for Islet Transplantation.


Assuntos
Diabetes Mellitus/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas
19.
Transpl Int ; 32(3): 323-333, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30318858

RESUMO

Remote ischaemic preconditioning (RIPC), which is the intermittent interruption of blood flow to a site distant from the target organ, is known to improve solid organ resistance to ischaemia-reperfusion injury. This procedure could be of interest in islet transplantation to mitigate hypoxia-related loss of islet mass after isolation and transplantation. Islets isolated from control or RIPC donors were analyzed for yield, metabolic activity, gene expression and high mobility group box-1 (HMGB1) content. Syngeneic marginal mass transplantation was performed in four streptozotocin-induced diabetic groups: control, RIPC in donor only, RIPC in recipient only, and RIPC in donor and recipient. Islets isolated from RIPC donors had an increased yield of 20% after 24 h of culture compared to control donors (P = 0.007), linked to less cell death (P = 0.08), decreased expression of hypoxia-related genes (Hif1a P = 0.04; IRP94 P = 0.008), and increased intra-cellular (P = 0.04) and nuclear HMGB1. The use of RIPC in recipients only did not allow for reversal of diabetes, with increased serum HMGB1 at day 1; the three other groups demonstrated significantly better outcomes. Performing RIPC in the donors increases islet yield and resistance to hypoxia. Validation is needed, but this strategy could help to decrease the number of donors per islet recipient.


Assuntos
Precondicionamento Isquêmico , Transplante das Ilhotas Pancreáticas/métodos , Animais , Ensaio de Imunoadsorção Enzimática , Proteína HMGB1/sangue , Proteína HMGB1/fisiologia , Insulina/metabolismo , Fígado/fisiopatologia , Modelos Animais , Ratos , Ratos Endogâmicos Lew , Doadores de Tecidos
20.
Cell Death Dis ; 9(7): 726, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941940

RESUMO

NRLP3 inflammasome is a protein complex involved in the maturation of IL1ß. In the onset of type 1 diabetes as well as in islet transplantation, IL-1ß is one of the cytokines involved in the recruitment of immune cells in islets and eventually in islet destruction. Whether IL-1ß is produced by islet cells is still under debate and NLRP3 inflammasome-dependent IL-1ß production has not been yet determined in human islets. The aim of this study was to determine the expression and the regulation of the NRLP3 inflammasome in human islets. Human islets were stimulated with LPS and successively with ATP (LPS + ATP) in the presence or absence of the inflammasome inhibitor glyburide. Islets were also incubated in hypoxic or normoxic conditions for 24 h in the presence or absence of glyburide. Then, IL1B and NLRP3 expression was studied by real time PCR, protein expression by western blot, protein localization by immunofluorescence and protein secretion by ELISA. LPS + ATP increased gene expression of NRLP3 and IL1B. Glyburide partially prevented this effect. IL-1ß protein was localized in ß and non-ß cells. Moreover, LPS + ATP increased IL-1ß protein expression and production, which were prevented by glyburide. Hypoxia increased gene expression of NRLP3 and IL1B and induced IL-1ß and caspase-1 production. Finally, hypoxia-induced cell death which was not prevented by inhibition of NLRP3 inflammasome. NRLP3 inflammasome is expressed and plays a role in IL-1ß production by human islets. By contrast, NRLP3 inflammasome activation is not involved in islet cell death induced by hypoxia.


Assuntos
Regulação da Expressão Gênica , Inflamassomos/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Morte Celular/efeitos dos fármacos , Glibureto/farmacologia , Humanos , Hipóxia/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...