Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 283: 120403, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865260

RESUMO

The mechanisms of cognitive decline and its variability during healthy aging are not fully understood, but have been associated with reorganization of white matter tracts and functional brain networks. Here, we built a brain network modeling framework to infer the causal link between structural connectivity and functional architecture and the consequent cognitive decline in aging. By applying in-silico interhemispheric degradation of structural connectivity, we reproduced the process of functional dedifferentiation during aging. Thereby, we found the global modulation of brain dynamics by structural connectivity to increase with age, which was steeper in older adults with poor cognitive performance. We validated our causal hypothesis via a deep-learning Bayesian approach. Our results might be the first mechanistic demonstration of dedifferentiation during aging leading to cognitive decline.


Assuntos
Envelhecimento Saudável , Substância Branca , Humanos , Idoso , Teorema de Bayes , Encéfalo , Envelhecimento/psicologia , Imageamento por Ressonância Magnética
2.
Pain ; 162(5): 1556-1566, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33110029

RESUMO

ABSTRACT: Preterm infants show a higher incidence of cognitive, social, and behavioral problems, even in the absence of major medical complications during their stay in the neonatal intensive care unit (NICU). Several authors suggest that early-life experience of stress and procedural pain could impact cerebral development and maturation resulting in an altered development of cognition, behavior, or motor patterns in later life. However, it remains very difficult to assess this impact of procedural pain on physiological development. This study describes the maturation of electroencephalogram (EEG) signals and heart rate variability in a prospective cohort of 92 preterm infants (<34 weeks gestational age) during their NICU stay. We took into account the number of noxious, ie, skin-breaking, procedures they were subjected in the first 5 days of life, which corresponded to a median age of 31 weeks and 4 days. Using physiological signal modelling, this study shows that a high exposure to early procedural pain, measured as skin-breaking procedures, increased the level of discontinuity in both EEG and heart rate variability in preterm infants. These findings have also been confirmed in a subset of the most vulnerable preterm infants with a gestational age lower than 29 weeks. We conclude that a high level of early pain exposure in the NICU increases the level of functional dysmaturity, which can ultimately impact preterm infants' future developmental outcome.


Assuntos
Dor Processual , Eletroencefalografia , Frequência Cardíaca , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Estudos Prospectivos
3.
Front Neurol ; 11: 582891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178126

RESUMO

Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder with a high risk of early-onset epilepsy and a high prevalence of neurodevelopmental comorbidities, including intellectual disability and autism spectrum disorder (ASD). Therefore, TSC is an interesting disease model to investigate early biomarkers of neurodevelopmental comorbidities when interventions are favourable. We investigated whether early EEG characteristics can be used to predict neurodevelopment in infants with TSC. The first recorded EEG of 64 infants with TSC, enrolled in the international prospective EPISTOP trial (recorded at a median gestational age 42 4/7 weeks) was first visually assessed. EEG characteristics were correlated with ASD risk based on the ADOS-2 score, and cognitive, language, and motor developmental quotients (Bayley Scales of Infant and Toddler Development III) at the age of 24 months. Quantitative EEG analysis was used to validate the relationship between EEG background abnormalities and ASD risk. An abnormal first EEG (OR = 4.1, p-value = 0.027) and more specifically a dysmature EEG background (OR = 4.6, p-value = 0.017) was associated with a higher probability of ASD traits at the age of 24 months. This association between an early abnormal EEG and ASD risk remained significant in a multivariable model, adjusting for mutation and treatment (adjusted OR = 4.2, p-value = 0.029). A dysmature EEG background was also associated with lower cognitive (p-value = 0.029), language (p-value = 0.001), and motor (p-value = 0.017) developmental quotients at the age of 24 months. Our findings suggest that early EEG characteristics in newborns and infants with TSC can be used to predict neurodevelopmental comorbidities.

4.
Front Physiol ; 11: 741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670096

RESUMO

Early life stress in the neonatal intensive care unit (NICU) can predispose premature infants to adverse health outcomes and neurodevelopment delays. Hands-on-care and procedural pain might induce apneas, hypoxic events, and sleep-wake disturbances, which can ultimately impact maturation, but a data-driven method based on physiological fingerprints to quantify early-life stress does not exist. This study aims to provide an automatic stress detector by investigating the relationship between bradycardias, hypoxic events and perinatal stress in NICU patients. EEG, ECG, and SpO 2 were recorded from 136 patients for at least 3 h in three different monitoring groups. In these subjects, the stress burden was assessed using the Leuven Pain Scale. Different subspace linear discriminant analysis models were designed to detect the presence or the absence of stress based on information in each bradycardic spell. The classification shows an area under the curve in the range [0.80-0.96] and a kappa score in the range [0.41-0.80]. The results suggest that stress seems to increase SpO 2 desaturations and EEG regularity as well as the interaction between the cardiovascular and neurological system. It might be possible that stress load enhances the reaction to respiratory abnormalities, which could ultimately impact the neurological and behavioral development.

5.
Front Physiol ; 11: 581250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584326

RESUMO

This study aims at investigating the development of premature infants' autonomic nervous system (ANS) based on a quantitative analysis of the heart-rate variability (HRV) with a variety of novel features. Additionally, the role of heart-rate drops, known as bradycardias, has been studied in relation to both clinical and novel sympathovagal indices. ECG data were measured for at least 3 h in 25 preterm infants (gestational age ≤32 weeks) for a total number of 74 recordings. The post-menstrual age (PMA) of each patient was estimated from the RR interval time-series by means of multivariate linear-mixed effects regression. The tachograms were segmented based on bradycardias in periods after, between and during bradycardias. For each of those epochs, a set of temporal, spectral and fractal indices were included in the regression model. The best performing model has R 2 = 0.75 and mean absolute error MAE = 1.56 weeks. Three main novelties can be reported. First, the obtained maturation models based on HRV have comparable performance to other development models. Second, the selected features for age estimation show a predominance of power and fractal features in the very-low- and low-frequency bands in explaining the infants' sympathovagal development from 27 PMA weeks until 40 PMA weeks. Third, bradycardias might disrupt the relationship between common temporal indices of the tachogram and the age of the infant and the interpretation of sympathovagal indices. This approach might provide a novel overview of post-natal autonomic maturation and an alternative development index to other electrophysiological data analysis.

6.
Front Physiol ; 10: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833901

RESUMO

Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.

7.
J Neural Eng ; 15(6): 066006, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132438

RESUMO

OBJECTIVE: Neonates spend most of their time asleep. Sleep of preterm infants evolves rapidly throughout maturation and plays an important role in brain development. Since visual labelling of the sleep stages is a time consuming task, automated analysis of electroencephalography (EEG) to identify sleep stages is of great interest to clinicians. This automated sleep scoring can aid in optimizing neonatal care and assessing brain maturation. APPROACH: In this study, we designed and implemented an 18-layer convolutional neural network to discriminate quiet sleep from non-quiet sleep in preterm infants. The network is trained on 54 recordings from 13 preterm neonates and the performance is assessed on 43 recordings from 13 independent patients. All neonates had a normal neurodevelopmental outcome and the EEGs were recorded between 27 and 42 weeks postmenstrual age. MAIN RESULTS: The proposed network achieved an area under the mean and median ROC curve equal to 92% and 98%, respectively. SIGNIFICANCE: Our findings suggest that CNN is a suitable and fast approach to classify neonatal sleep stages in preterm infants.


Assuntos
Eletroencefalografia/métodos , Recém-Nascido Prematuro/fisiologia , Redes Neurais de Computação , Fases do Sono/fisiologia , Sono/fisiologia , Algoritmos , Automação , Encéfalo/crescimento & desenvolvimento , Eletroencefalografia/estatística & dados numéricos , Feminino , Humanos , Recém-Nascido , Masculino , Vigília/fisiologia
8.
Physiol Meas ; 38(1): 63-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941230

RESUMO

Previous studies have proved that the baroreceptor reflex (baroreflex) control of heart rate can be used for stratification of post-infarction population and, in general, cardiovascular disease populations. Many methods have been proposed to estimate the so-called baroreflex sensitivity (BRS) expressed as ms mmhg-1. Most of the studies that exploit BRS focus mainly on acute myocardial infarction (AMI) and there are no important works that investigate the role of BRS immediately after cardiac arrest (CA). The present work is a continuation of the published work of Ristagno et al (2014 Shock 41 72-8). In particular, the main objectives are: (1) to study the evolution of BRS after CA and following cardiopulmonary resuscitation (CPR); (2) to verify if the recovery of cardiovascular stability and arterial blood pressure is accompanied by a recovery of BR in a porcine model; (3) to investigate the possible causes of the BRS variations in response to CA and following cardiopulmonary resuscitation. All the BRS estimators adopted in this study show a significant decrease after CA. However, partial recovery is obtained in the last hours of post resuscitation. Analysis of impulse response showed a decrease in peak delay after CA and was significantly shorter 4 hours after CPR. This finding hints at a compensation mechanism: a faster response when baroreflex gain is not fully restored. The increase in the speed of baroreflex response is in line with the hypothesis of a key role of the parasympathetic nervous system, which is known to act at a higher firing rate.


Assuntos
Barorreflexo , Pressão Sanguínea/fisiologia , Parada Cardíaca/fisiopatologia , Nervo Vago/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...