Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenomics ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587919

RESUMO

Precise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.

2.
Environ Health Perspect ; 131(6): 67007, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37307168

RESUMO

BACKGROUND: Osteoclasts are major actors in the maintenance of bone homeostasis. The full functional maturation of osteoclasts from monocyte lineage cells is essential for the degradation of old/damaged bone matrix. Diuron is one of the most frequently encountered herbicides, particularly in water sources. However, despite a reported delayed ossification in vivo, its impact on bone cells remains largely unknown. OBJECTIVES: The objectives of this study were to first better characterize osteoclastogenesis by identifying genes that drive the differentiation of CD14+ monocyte progenitors into osteoclasts and to evaluate the toxicity of diuron on osteoblastic and osteoclastic differentiation in vitro. METHODS: We performed chromatin immunoprecipitation (ChIP) against H3K27ac followed by ChIP-sequencing (ChIP-Seq) and RNA-sequencing (RNA-Seq) at different stages of differentiation of CD14+ monocytes into active osteoclasts. Differentially activated super-enhancers and their potential target genes were identified. Then to evaluate the toxicity of diuron on osteoblasts and osteoclasts, we performed RNA-Seq and functional tests during in vitro osteoblastic and osteoclastic differentiation by exposing cells to different concentrations of diuron. RESULTS: The combinatorial study of the epigenetic and transcriptional remodeling taking place during differentiation has revealed a very dynamic epigenetic profile that supports the expression of genes vital for osteoclast differentiation and function. In total, we identified 122 genes induced by dynamic super-enhancers at late days. Our data suggest that high concentration of diuron (50µM) affects viability of mesenchymal stem cells (MSCs) in vitro associated with a decrease of bone mineralization. At a lower concentration (1µM), an inhibitory effect was observed in vitro on the number of osteoclasts derived from CD14+ monocytes without affecting cell viability. Among the diuron-affected genes, our analysis suggests a significant enrichment of genes targeted by pro-differentiation super-enhancers, with an odds ratio of 5.12 (ρ=2.59×10-5). DISCUSSION: Exposure to high concentrations of diuron decreased the viability of MSCs and could therefore affect osteoblastic differentiation and bone mineralization. This pesticide also disrupted osteoclasts maturation by impairing the expression of cell-identity determining genes. Indeed, at sublethal concentrations, differences in the expression of these key genes were mild during the course of in vitro osteoclast differentiation. Taken together our results suggest that high exposure levels of diuron could have an effect on bone homeostasis. https://doi.org/10.1289/EHP11690.


Assuntos
Herbicidas , Osteogênese , Humanos , Diurona , Sequências Reguladoras de Ácido Nucleico , Diferenciação Celular
3.
Cancers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497429

RESUMO

TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73's pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy.

4.
Biochem Pharmacol ; 194: 114797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678225

RESUMO

In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Sistemas de Liberação de Medicamentos/métodos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Proteases Específicas de Ubiquitina/metabolismo , Antineoplásicos/administração & dosagem , Criança , Sistemas de Liberação de Medicamentos/tendências , Humanos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
5.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571917

RESUMO

Osteosarcoma (OS) is the most common malignant bone tumor in children and teenagers. In many cases, such as poor response to treatment or the presence of metastases at diagnosis, the survival rate of patients remains very low. Although in the literature, more and more studies are emerging on the role of Ubiquitin-Specific Proteases (USPs) in the development of many cancers, few data exist regarding OS. In this context, RNA-sequencing analysis of OS cells and mesenchymal stem cells differentiated or not differentiated into osteoblasts reveals increased expression of four USPs in OS tumor cells: USP6, USP27x, USP41 and USP43. Tissue microarray analysis of patient biopsies demonstrates the nucleic and/or cytoplasmic expression of these four USPs at the protein level. Interestingly, Kaplan-Meyer analysis shows that the expression of two USPs, USP6 and USP41, is correlated with patient survival. In vivo experiments using a preclinical OS model, finally demonstrate that PR619, a USP inhibitor able to enhance protein ubiquitination in OS cell lines, reduces primary OS tumor growth and the development of lung metastases. In this context, in vitro experiments show that PR619 decreases the viability of OS cells, mainly by inducing a caspase3/7-dependent cell apoptosis. Overall, these results demonstrate the relevance of targeting USPs in OS.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Animais , Apoptose , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/secundário , Camundongos , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Prognóstico , Células Tumorais Cultivadas , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cells ; 9(4)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230926

RESUMO

The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.


Assuntos
Neoplasias Ósseas/patologia , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , MicroRNAs/genética , Osteoblastos/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias Ósseas/genética , Humanos , MicroRNAs/metabolismo , Osteoblastos/metabolismo
7.
Epigenomics ; 12(2): 127-144, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31849242

RESUMO

Throughout life, bones are subjected to the so-called 'bone-remodeling' process, which is a balanced mechanism between the apposition and the resorption of bone. This remodeling process depends on the activities of bone-specialized cells, namely the osteoblasts and the osteoclasts. Any deregulation in this process results in bone-related pathologies, classified as either metabolic nonmalignant diseases (such as osteoporosis) or malignant primary bone sarcomas. As these pathologies are not characterized by common targetable genetic alterations, epigenetic strategies could be relevant and promising options. Recently, targeting epigenetic regulators such as the bromodomains and extraterminal domains (BET) readers have achieved success in numerous other pathologies, including cancers. In this review, we highlight the current state of the art in terms of the diverse implications of BET bromodomain proteins in the bone's biology and its defects. Consequently, their role in bone-related pathologies will also be developed, especially in the context of the primary bone sarcomas.


Assuntos
Neoplasias Ósseas/genética , Domínios Proteicos , Proteínas/fisiologia , Acetilação , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/terapia , Epigênese Genética , Histonas/metabolismo , Humanos , Osteoporose/tratamento farmacológico , Osteossarcoma/genética , Processamento de Proteína Pós-Traducional , Proteínas/antagonistas & inibidores , Proteínas/química , Proteínas/metabolismo , Sarcoma de Ewing/genética
8.
Oncotarget ; 9(87): 35726-35741, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515265

RESUMO

The metastatic dissemination is a complex multistep process by which tumor cells from a primary site enter into the systemic circulation to finally spread at distant sites. Even if this mechanism is rare at the tumor level, it remains the major cause of Osteosarcoma-patients' relapse and mortality. MicroRNAs (miRNAs) have recently been described as novel epigenetics' genes' expression regulators actively implicated in cancer progression and dissemination. The understanding of their implication in the metastatic spreading could help clinicians to improve the outcome of osteosarcoma. We established the miRNA's expression-profile between primary bone-tumors (PTs), circulating tumor cells (CTCs) and lung metastatic (META) samples from in vivo mice xenograft models. Our results show that the expression level of the miR-198 and -206 was decreased in META samples, in which the expression of the metastasis-related receptor C-Met was up-regulated. Those expression variations were validated in osteosarcoma patient biopsies from matching primary tumors and lung metastasis. We validated in vitro the endogenous miRNAs inhibitory effects on both migration and invasion, as well as we confirmed by luciferase assays that the C-Met receptor is one of their bona-fide targets. The anti-metastatic effect of these miRNAs was also validated in vivo, as their direct injections into the tumors reduce the number of lung-metastases and prolongs the overall survival of the treated animals. All together, our results suggest the absence of the miR-198 and -206 as powerful predictive biomarkers of the tumor cell dissemination and the rationale of their potential therapeutic use in the treatment of Osteosarcoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...