Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 6): 127134, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776933

RESUMO

Oral mucosal ulcerations expose connective tissue to different pathogens and this can progress to systemic infection. This study aimed to synthesize environmentally-friendly films with chitosan and protic ionic liquids, possessing mucoadhesive properties, activity against opportunistic microorganisms, enhanced malleability and mechanical resistance to be used as a wound dressing on the oral mucosa. Therefore, films with chitosan and 10, 35, and 50 % (wt/wt) of 2-hydroxy diethylammonium lactate, salicylate, and maleate protic ionic liquids were synthesized. Thickness measurements and mechanical properties analysis were performed. In addition, oral mucoadhesion, antimicrobial activity, and cytotoxicity properties were investigated. Results showed that the addition of 35wt% and 50wt% of all kinds of protic ionic liquids tested presented significant improvements in film thickness and mechanical properties. Films based on chitosan and the protic ionic liquid 2-hydroxy diethylammonium salicylate at percentages of 35 and 50wt% exhibited superior mucoadhesive properties, antimicrobial activity on opportunistic microorganisms and an improvement in their flexibility after immersion in synthetic saliva. Cytotoxicity results suggest that all kinds of chitosan/protic ionic liquids films tested are safe for intra-oral use. Therefore, the results of this study indicate that these materials could be good candidates for efficient and environmentally-friendly wound dressing films on the oral mucosa.


Assuntos
Anti-Infecciosos , Quitosana , Líquidos Iônicos , Mucosa Bucal , Bandagens , Salicilatos
2.
Pharmaceutics ; 15(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111770

RESUMO

Doxycycline (DX) is a well-established and broad-spectrum antimicrobial drug. However, DX has drawbacks, such as physicochemical instability in aqueous media and bacterial resistance. The inclusion of drugs in cyclodextrin complexes and their loading into nanocarriers can overcome these limitations. Thus, we studied the DX/sulfobutylether-ß-CD (SBE-ß-CD) inclusion complex for the first time and used it to reticulate chitosan. The resulting particles were evaluated by their physicochemical characteristics and antibacterial activity. DX/SBE-ß-CD complexes were characterized by nuclear magnetic resonance, infrared spectroscopy, thermal analysis, X-ray diffraction, and scanning electron microscopy (SEM), whereas DX-loaded nanoparticles were characterized by dynamic light scattering, SEM, and drug content. The partial inclusion of the DX molecule in CD happened in a 1:1 proportion and brought increased stability to solid DX upon thermal degradation. Chitosan-complex nanoparticles measured approximately 200 nm, with a narrow polydispersity and particles with sufficient drug encapsulation for microbiological studies. Both formulations preserved the antimicrobial activity of DX against Staphylococcus aureus, whereas DX/SBE-ß-CD inclusion complexes were also active against Klebsiella pneumoniae, indicating the potential use of these formulations as drug delivery systems to treat local infections.

3.
Int J Pharm ; 622: 121841, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35623486

RESUMO

Several antithrombotic drugs are available to treat cardiovascular diseases due to its high mortality and morbidity worldwide. Despite these, severe adverse effects that can lead to treatment withdrawal have been described, highlighting the importance of new therapies. Thus, this work describes the development of fucoidan microparticles containing acetylsalicylic acid (MP/F4M) for pulmonary delivery and in vitro, ex vivo, and in vivo evaluation. Microparticles were prepared via spray-drying and characterized in vitro (mucoadhesive properties, coagulation time, platelet aggregation, adhesion, and hemolysis) followed by ex vivo platelet aggregation, in vivo arterial thrombosis, and hemorrhagic profile. The formulation physicochemical characterization showed suitable characteristics along with delayed drug release, increased breathable particle fraction, and high washability resistance as well as antiplatelet activity and enhanced platelet adhesion in vitro. In in vivo assays, MP/F4M protected against arterial thrombosis, without changes in the hemorrhagic profile. Finally, no lung changes were observed after prolonged pulmonary administration, whereas isolated ASA led to an inflammatory response. In conclusion, pulmonary administration of fucoidan microparticles with an antiplatelet drug may be an alternative therapy to treat cardiovascular diseases, opening the field for different formulations.


Assuntos
Doenças Cardiovasculares , Trombose , Aspirina , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Polissacarídeos , Trombose/tratamento farmacológico
4.
Nanomedicine (Lond) ; 16(20): 1775-1790, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34313137

RESUMO

Aim: To evaluate the antitumor efficacy of bevacizumab-functionalized nanocapsules in a rat glioblastoma model after the pretreatment with nanocapsules functionalized with a peptide-specific to the epidermal growth factor receptor variant III. Materials & methods: Nanocapsules were prepared, physicochemical characterized and intranasally administered to rats. Parameters such as tumor size, histopathological characteristics and infiltration of CD8+ T lymphocytes were evaluated. Results: The strategy of treatment resulted in a reduction of 87% in the tumor size compared with the control group and a higher infiltration of CD8+ T lymphocytes in tumoral tissue. Conclusion: The block of two different molecular targets using nose-to-brain delivery represents a new and promising approach against glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanocápsulas , Animais , Bevacizumab/uso terapêutico , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB , Glioblastoma/tratamento farmacológico , Nanocápsulas/uso terapêutico , Peptídeos/uso terapêutico , Ratos
5.
Data Brief ; 36: 107089, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026983

RESUMO

A set of synthetic data, of antibacterial evaluation against gram-positive bacteria, as well as, the interaction of bacterial with lipid-core nanocapsules containing fusidic acid is presented here. In this data set, the analytical data are detailed; serial microdilution; nanoparticle tracking analysis; transmission electron microscopy; minimum inhibitory concentration; diameter size and zeta potential, and infra-red of the formulations before and after contact with bacteria.

6.
Pharm Res ; 38(2): 301-317, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33608808

RESUMO

PURPOSE: Folic acid-doxorubicin-double-functionalized-lipid-core nanocapsules (LNC-CS-L-Zn+2-DOX-FA) were prepared, characterized, and evaluated in vitro against ovarian and bladder cancer cell lines (OVCAR-3 and T24). METHODS: LNC-CS-L-Zn+2-DOX-FA was prepared by self-assembly and interfacial reactions, and characterized using liquid chromatography, particle sizing, transmission electron microscopy, and infrared spectroscopy. Cell viability and cellular uptake were studied using MTT assay and confocal microscopy. RESULTS: The presence of lecithin allows the formation of nanocapsules with a lower tendency of agglomeration, narrower size distributions, and smaller diameters due to an increase in hydrogen bonds at the surface. LNC-L-CS-Zn+2-DOX-FA, containing 98.00 ± 2.34 µg mL-1 of DOX and 105.00 ± 2.05 µg mL-1 of FA, had a mean diameter of 123 ± 4 nm and zeta potential of +12.0 ± 1.3 mV. After treatment with LNC-L-CS-Zn+2-DOX-FA (15 µmol L-1 of DOX), T24 cells had inhibition rates above 80% (24 h) and 90% (48 h), whereas OVCAR-3 cells showed inhibition rates of 68% (24 h) and 93% (48 h), showing higher cytotoxicity than DOX.HCl. The fluorescent-labeled formulation showed a higher capacity of internalization in OVCAR-3 compared to T24 cancer cells. CONCLUSION: Lecithin favored the increase of hydrogen bonds at the surface, leading to a lower tendency of agglomeration for nanocapsules. LNC-CS-L-Zn+2-DOX-FA is a promising therapeutic agent against tumor-overexpressing folate receptors.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanocápsulas/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/química , Humanos , Lecitinas/química , Neoplasias Ovarianas/patologia , Tamanho da Partícula , Neoplasias da Bexiga Urinária/patologia
7.
Environ Sci Pollut Res Int ; 28(19): 24124-24137, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33483924

RESUMO

Pharmaceuticals, such as dipyrone (DIP), paracetamol (PCT), and propranolol (PPN), are widely used analgesics and beta-blockers with the greatest presence in wastewaters and, consequently, in natural waters. The present work evaluated solar light-driven photocatalyst from petrochemical industrial waste (PW) as a strategy for the degradation of three pharmaceuticals in different water matrices (distilled water-DW, simulated wastewater-SWW, and real hospital wastewater-RHWW). All experiments were carried out in a solar photo-reactor with a capacity of 1 L and the experimental condition employed was a catalyst concentration of 350 mg L-1 at pH 5.0; these conditions were selected considering the Doehlert design validation spreadsheet and the desirability function. All materials prepared were conveniently characterized by zeta potential, small-angle X-ray scattering (SAXS), diffuse reflectance ultraviolet-visible (DRUV), and infrared spectroscopy. According to the results of the characterization, significant differences have been observed between the PW and the photocatalyst such as vibrational modes, optical absorption gap, and acid-basic characteristics on the surface, which suggests the potential use of the photocatalyst in the degradation of contaminants of emerging concern. Based on pharmaceutical degradation, DIP showed the highest photosensitivity (87.5%), and therefore the highest photocatalytic degradation followed by PPN; both compounds achieved final concentrations below the limit of quantification of the chromatographic method in DW. However, PCT was the most recalcitrant pharmaceutical in all matrices. Radicals from chromophoric natural organic matter (NOM) could improve PCT degradation in the SWW matrix (56%). Nevertheless, the results in RHWW showed a matrix effect with decreased the oxidation percentages (DIP-99%; PPN-71%; PCT-17%); hence, the addition of an oxidant such as H2O2 was studied as a pharmaceutical oxidation boost in RHWW. PPN was the molecule most sensitive to this strategy of oxidation (98%). Furthermore, 20 transformation products (TPs) generated throughout the treatment were identified by LC-QTOF MS using a customized TPs database. According to quantitative structure activity relationship (Q)SAR analysis, more than 75% of the TPs identified were not biodegradable. About 35% of them have oral toxicity characteristics indicated by Cramer's rules, and the DIP TPs represent high toxicity for different trophic levels.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Peróxido de Hidrogênio , Oxirredução , Espalhamento a Baixo Ângulo , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Difração de Raios X
8.
Pharm Res ; 37(6): 91, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385723

RESUMO

PURPOSE: Bevacizumab (BCZ) is a recombinant monoclonal antibody that inhibits the biological activity of the vascular endothelial growth factor, which has an important role in angiogenesis for tumoral growth and progression. In this way, our objective was to develop chitosan-coated lipid-core nanocapsules functionalized with BCZ by an organometallic complex using gold-III. METHODS: The formulation was produced and characterized in relation to physicochemical characteristics. Furthermore, the antitumoral and antiangiogenic activities were evaluated against C6 glioma cell line and chicken embryo chorioallantoic membrane (CAM), respectively. RESULTS: Final formulation showed nanometric size, narrow polydispersity, positive zeta potential and gold clusters size lower than 2 nm. BCZ in aqueous solution (0.01-0.10 µmol L-1) did not show cytotoxic activity in vitro against C6 glioma cell line; although, MLNC-Au-BCZ showed cytotoxicity with a median inhibition concentration of 30 nmol L-1 of BCZ. Moreover, MLNC-Au-BCZ demonstrated cellular internalization dependent on incubation time and BCZ concentration. BCZ solution did not induce significant apoptosis as compared to MLNC-Au-BCZ within 24 h of treatment. CAM assay evidenced potent antiangiogenic activity for MLNC-Au-BCZ, representing a decrease of 5.6 times in BCZ dose comparing to BCZ solution. CONCLUSION: MLNC-Au-BCZ is a promising product for the treatment of solid tumors.


Assuntos
Inibidores da Angiogênese/química , Bevacizumab/química , Quitosana/química , Glioma/tratamento farmacológico , Ouro/química , Lipídeos/química , Nanocápsulas/química , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bevacizumab/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Hexoses/química , Humanos , Lectinas de Plantas/química , Polissorbatos/química , Proteínas de Soja/química , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Environ Sci Pollut Res Int ; 26(7): 6532-6544, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623335

RESUMO

A solar homo/heterogeneous photo-Fenton process using five materials (Fe(II), Fe(III), mining waste, Fe(II)/mining waste, and Fe(III)/mining waste) supported on sodium alginate was used as a strategy to iron dosage for the degradation of eight pharmaceuticals in three different water matrices (distilled water, simulated wastewater, and hospital wastewater). Experiments were carried out in a photoreactor with a capacity of 1 L, using 3 g of iron-alginate spheres and an initial hydrogen peroxide concentration of 25 mg L-1, at pH 5.0. All the materials prepared were characterized by different techniques. The Fe(III)-alginate spheres presented the best pharmaceutical degradation after a treatment time of 116 min. Nineteen transformation products generated during the solar photo-Fenton process were identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, using a purpose-built database developed for detecting these transformation products. Finally, the transformation products identified were classified according to their toxicity and predicted biodegradability.


Assuntos
Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Alginatos , Biodegradação Ambiental , Cromatografia Líquida , Compostos Férricos , Peróxido de Hidrogênio , Ferro , Preparações Farmacêuticas/química , Luz Solar , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
10.
Pharm Res ; 34(2): 438-452, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27981451

RESUMO

PURPOSE: This study was conducted a promising approach to surface functionalization developed for lipid-core nanocapsules and the merit to pursue new strategies to treat solid tumors. METHODS: Bromelain-functionalized multiple-wall lipid-core nanocapsules (Bro-MLNC-Zn) were produced by self-assembling following three steps of interfacial reactions. Physicochemical and structural characteristics, in vitro proteolytic activity (casein substrate) and antiproliferative activity (breast cancer cells, MCF-7) were determined. RESULTS: Bro-MLNC-Zn had z-average diameter of 135 nm and zeta potential of +23 mV. The complex is formed by a Zn-N chemical bond and a chelate with hydroxyl and carboxyl groups. Bromelain complexed at the nanocapsule surface maintained its proteolytic activity and showed anti-proliferative effect against human breast cancer cells (MCF-7) (72.6 ± 1.2% at 1.250 µg mL-1 and 65.5 ± 5.5% at 0.625 µg mL-1). Comparing Bro-MLNC-Zn and bromelain solution, the former needed a dose 160-folds lower than the latter for a similar effect. Tripan blue dye assay corroborated the results. CONCLUSIONS: The surface functionalization approach produced an innovative formulation having a much higher anti-proliferative effect than the bromelain solution, even though both in vitro proteolytic activity were similar, opening up a great opportunity for further studies in nanomedicine.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Bromelaínas/química , Bromelaínas/farmacologia , Proliferação de Células/efeitos dos fármacos , Lipídeos/química , Nanocápsulas/química , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Portadores de Fármacos/química , Feminino , Humanos , Células MCF-7 , Nanomedicina/métodos , Tamanho da Partícula
11.
Inorg Chem ; 51(11): 6228-36, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22587306

RESUMO

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn(2)P(2)O(7) can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host-guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials.

12.
Langmuir ; 26(12): 10223-33, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20380399

RESUMO

We present a method for the preparation and deposition of metallic microstructures and nanostructures deposited on silicon and silica surfaces by pyrolysis in air at 800 degrees C of the corresponding metallophosphazene (cyclic or polymer). Atomic force microscopy studies reveal that the morphology is dependent on the polymeric or oligomeric nature of the phosphazene precursor, on the preparation method used, and on the silicon substrate surface (crystalline or amorphous) and its prior inductively couple plasma etching treatment. Microscale and nanoscale structures and high-surface-area thin films of gold, palladium, silver, and tin were successfully deposited from their respective newly synthesized precursors. The characteristic morphology of the deposited nanostructures resulted in varied roughness and increased surface area and was observed to be dependent on the precursor and the metal center. In contrast to island formation from noble metal precursors, we also report a coral of SnP(2)O(7) growth on Si and SiO(2) surfaces from the respective Sn polymer precursor, leaving a self-affine fractal structure with a well-defined roughness exponent that appears to be independent (within experimental error) of the average size of the islands. The nature of the precursor will be shown to influence the degree of surface features, and the mechanism of their formation is presented. The method reported here constitutes a new route to the deposition of single-crystal metallic, oxidic, and phosphate nanostructures and thin films on technologically relevant substrates.

13.
J Nanosci Nanotechnol ; 9(3): 1825-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19435045

RESUMO

Pyrolysis of the silicon-containing polymer {(NP[O2C12H8])0.5[NP(OC6H4 x SiMe3)2]0.5-x [NP(OC6H5) x (OC6H4SiMe3)]x}n (1) (x = 0.13), (2) (x = 0.3), and (3) {(NP[O,2C12He])0.5[NP(OC6H4SiMe2Ph),2]0.2 [NP(OC6H5)(OC6H4SiMe2Ph)]0.3}n in air at 600 degrees C, 800 degrees C and 1000 degrees C results in the formation of nanostructured SiP,2O7, along with P4O7. The morphology as well as the size and shape of the nanostructures is observed to depend on both the mole fraction of silicon, the polymer precursor and the temperature of the pyrolysis. The first observation of nanotube formation using polyphosphazenes as a template, was noted during pyrolysis of the precursor (1) at 600 degrees C. The surface morphology of the Si or SiO2, studied by AFM, depends strongly on the crystallinity of the wafer surface used during deposition. Regular lance or point-like structures were obtained from SiP2O7 deposited on SiO2 from its precursor (2). The unique formation of micro and nanostructured SiP2O7 is discussed and a mechanism of the formation of the nanostructured materials is proposed.

14.
J Nanosci Nanotechnol ; 9(2): 1103-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19441465

RESUMO

The effect of the neutral surfactant dodecylamine and octadecylamine on the synthesis of TiO2-based nanostructures by the treatment of anatase with NaOH under hydrothermal conditions in the temperature range 120-150 degrees C and different reaction times was investigated. The products analyzed by electron microscopy, X-ray diffraction, FT-IR and elemental analysis contains--depending of the amine, the temperature and the duration of the hydrothermal treatment--spherical and tubular species containing the acid H2Ti3O7. The formation of morphologically almost pure phases constituted by nanospheres and nanotubes were obtained at 130 degrees C after about 30 and 50 h respectively. Using dodecylamine, structurally fragile tubular amine containing nanocomposites are obtained, while in the case of the octadecylamine, notoriously stable purely inorganic nanotubes are formed. The role of the amine in these reactions is discussed.

15.
Inorg Chem ; 47(24): 11561-9, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18975936

RESUMO

The synthesis and characterization of new organosilicon derivatives of N(3)P(3)Cl(6), N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](6) (1), N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](3)[NCH(3)(CH(2))(3)CN](3) (2), and N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](3)[HOC(6)H(4)(CH(2))CN](3) (3) are reported. Pyrolysis of 1, 2, and 3 in air and at several temperatures results in nanostructured materials whose composition and morphology depend on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products stem from the reaction of SiO(2) with P(2)O(5), leading to either crystalline Si(5)(PO(4))(6)O, SiP(2)O(7) or an amorphous phase as the glass Si(5)(PO(4))(6)O/3SiO(2).2P(2)O(5), depending on the temperature and nature of the trimer precursors. From 1 at 800 degrees C, core-shell microspheres of SiO(2) coated with Si(5)(PO(4))(6)O are obtained, while in other cases, mesoporous or dense structures are observed. Atomic force microscopy examination after deposition of the materials on monocrystalline silicon wafers evidences morphology strongly dependent on the precursors. Isolated islands of size approximately 9 nm are observed from 1, whereas dense nanostructures with a mean height of 13 nm are formed from 3. Brunauer-Emmett-Teller measurements show mesoporous materials with low surface areas. The proposed growth mechanism involves the formation of cross-linking structures and of vacancies by carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon.

16.
Small ; 4(7): 990-1000, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18535992

RESUMO

Both low-dimensional bar-coded metal oxide layers, which exhibit molecular hinging, and free-standing organic nanostructures can be obtained from unique nanofibers of vanadium oxide (VO(x)). The nanofibers are successfully synthesized by a simple chemical route using an ethanolic solution of vanadium pentoxide xerogel and dodecanethiol resulting in a double bilayered laminar turbostratic structure. The formation of vanadium oxide nanofibers is observed after hydrothermal treatment of the thiol-intercalated xerogel, resulting in typical lengths in the range 2-6 microm and widths of about 50-500 nm. We observe concomitant hinging of the flexible nanofiber lamina at periodic hinge points in the final product on both the nanoscale and molecular level. Bar-coded nanofibers comprise alternating segments of organic-inorganic (thiols-VO(x)) material and are amenable to segmented, localized metal nanoparticle docking. Under certain conditions free-standing bilayered organic nanostructures are realized.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Óxidos/química , Vanádio/química , Química Inorgânica/métodos , Química Orgânica/métodos , Cristalização , Eletroquímica/métodos , Géis , Substâncias Intercalantes/farmacologia , Nanotecnologia/métodos , Compostos Orgânicos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...