Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13113-13125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700843

RESUMO

Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.

2.
Nat Commun ; 15(1): 3766, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704382

RESUMO

Coordination cages have been widely reported to bind a variety of guests, which are useful for chemical separation. Although the use of cages in the solid state benefits the recycling, the flexibility, dynamicity, and metal-ligand bond reversibility of solid-state cages are poor, preventing efficient guest encapsulation. Here we report a type of coordination cage-integrated solid materials that can be swelled into gel in water. The material is prepared through incorporation of an anionic FeII4L6 cage as the counterion of a cationic poly(ionic liquid) (MOC@PIL). The immobilized cages within MOC@PILs have been found to greatly affect the swelling ability of MOC@PILs and thus the mechanical properties. Importantly, upon swelling, the uptake of water provides an ideal microenvironment within the gels for the immobilized cages to dynamically move and flex that leads to excellent solution-level guest binding performances. This concept has enabled the use of MOC@PILs as efficient adsorbents for the removal of pollutants from water and for the purification of toluene and cyclohexane. Importantly, MOC@PILs can be regenerated through a deswelling strategy along with the recycling of the extracted guests.

3.
Chem Commun (Camb) ; 60(7): 779-792, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38126398

RESUMO

The effective capture of radioiodine is vital to the development of the nuclear industry and ecological environmental protection. There is, therefore, a continuously growing research exploration in various types of solid-state materials for iodine capture. During the last decade, the potential of using macrocycle and cage-based supramolecular materials in effective uptake and separation of radioactive iodine has been demonstrated. Interest in the application of these materials in iodine capture originates from their diversified porous characteristics, abundant host-guest chemistry, high iodine affinity and adsorption capacity, high stability in various environments, facile modification and functionalization, and intrinsic structural flexibility, among other attributes. Herein, recent progress in macrocycle and cage-based solid-state materials, including pure discrete macrocycles and cages, and their polymeric forms, for iodine capture is summarized and discussed with an emphasis on iodine capture capacities, mechanisms, and design strategies.

4.
JACS Au ; 3(8): 2183-2191, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37654592

RESUMO

Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal-organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host-guest interactions. In particular, the confined in situ self-assembly of an anionic FeII4L6 nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host-guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin FeII, FeII4L6@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host-guest structures.

5.
Org Biomol Chem ; 21(33): 6730-6737, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37547927

RESUMO

Due to their significant role in industry and biological systems, the interest in selectively recognizing and detecting small dicarboxylates has grown in recent years. In this study, we report on the binding properties of a family of tubular-shaped heterotritopic receptors based on bis-calix[6]arenes, which contain three (thio)urea bridges (C3U and C3TU) or six urea bridges (C6U), toward dicarboxylates. While poor binding properties were observed by NMR for the newly synthesized C6U, receptors C3U and C3TU exhibited a unique ability to cooperatively complex a dicarboxylate anion sandwiched between two ammonium ions. The three ions are complexed in contact and aligned within the tubular shape of the receptor, forming cascade complexes that are stable even in a competitive environment. The different binding properties between the receptors were rationalized in terms of size, flexibility, H-bond donor ability, and intramolecular H-bonding within the anion binding pocket between the calixarene cavities. With C3U, a rare selectivity for oxalate over other small dicarboxylates and various bicharged anions was observed. Molecular modeling of the cascade complex indicated that the oxalate anion is stabilized by an array of hydrogen bonds with the urea bridges of the receptor and both propylammonium cations nested within the calixarene cavities.

6.
J Appl Crystallogr ; 55(Pt 4): 1033-1044, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974729

RESUMO

Cavities are a ubiquitous feature of chemical structures encountered in various fields ranging from supramolecular chemistry to molecular biology. They are involved in the encapsulation, transport and transformation of guest molecules, thus necessitating a precise and accessible tool for estimating and visualizing their size and shape. MoloVol, a free user-parametrizable open-source software, developed for calculating a range of geometric features for both unit-cell and isolated structures, is presented here. MoloVol utilizes up to two spherical probes to define cavities, surfaces and volumes. The program was optimized by combining an octree data structure with voxel-partitioned space, allowing for even high-resolution protein structure calculations on reasonable timescales. MoloVol comes with a user-friendly graphic interface along with a command-line interface for high-throughput calculations. It was written in C++ and is available on Windows, macOS and Linux distributions.

7.
J Am Chem Soc ; 144(3): 1106-1112, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014803

RESUMO

We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.

8.
Chemistry ; 26(8): 1880-1886, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868256

RESUMO

N-(4-Nitrobenzoyl)-Phe self-assembled into a transparent supramolecular hydrogel, which displayed high fibroblast and keratinocyte cell viability. The compound showed a mild antimicrobial activity against E. coli both as a hydrogel and in solution. Single-crystal XRD data revealed packing details, including protonation of the C-terminus due to an apparent pKa shift, as confirmed by pH titrations. MicroRaman analysis revealed almost identical features between the gel and crystal states, although more disorder in the former. The hydrogel is thermoreversible and disassembles within a range of temperatures that can be fine-tuned by experimental conditions, such as gelator concentration. At the minimum gelling concentration of 0.63 wt %, the hydrogel disassembles in a physiological temperature range of 39-42 °C, thus opening the way to its potential use as a biomaterial.


Assuntos
Anti-Infecciosos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Aminoácidos/química , Animais , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Humanos , Camundongos , Conformação Molecular , Células NIH 3T3
9.
J Am Chem Soc ; 141(48): 18949-18953, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31729877

RESUMO

Here we report a new supramolecular strategy for the selective separation of specific polycyclic aromatic hydrocarbons (PAHs) from mixtures. The use of a triethylene glycol-functionalized formylpyridine subcomponent allowed the construction of an FeII4L4 tetrahedron 1 that was capable of transferring between water and nitromethane layers, driven by anion metathesis. Cage 1 selectively encapsulated coronene from among a mixture of eight different types of PAHs in nitromethane, bringing it into a new nitromethane phase by transiting through an intermediate water phase. The bound coronene was released from 1 upon addition of benzene, and both the cage and the purified coronene could be separated via further phase separation.

10.
Nature ; 574(7779): 511-515, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645731

RESUMO

Over the past few decades, several molecular cages, hosts and nanoporous materials enclosing nanometre-sized cavities have been reported1-5, including coordination-driven nanocages6. Such nanocages have found widespread use in molecular recognition, separation, stabilization and the promotion of unusual chemical reactions, among other applications3-10. Most of the reported nanospaces within molecular hosts are confined by aromatic walls, the properties of which help to determine the host-guest behaviour. However, cages with nanospaces surrounded by antiaromatic walls have not yet been developed, owing to the instability of antiaromatic compounds; as such, the effect of antiaromatic walls on the properties of nanospaces remains unknown. Here we demonstrate the construction of an antiaromatic-walled nanospace within a self-assembled cage composed of four metal ions with six identical antiaromatic walls. Calculations indicate that the magnetic effects of the antiaromatic moieties surrounding this nanospace reinforce each other. This prediction is confirmed by 1H nuclear magnetic resonance (NMR) signals of bound guest molecules, which are observed at chemical shift values of up to 24 parts per million (ppm), owing to the combined antiaromatic deshielding effect of the surrounding rings. This value, shifted 15 ppm from that of the free guest, is the largest 1H NMR chemical shift displacement resulting from an antiaromatic environment observed so far. This cage may thus be considered as a type of NMR shift reagent, moving guest signals well beyond the usual NMR frequency range and opening the way to further probing the effects of an antiaromatic environment on a nanospace.

11.
J Am Chem Soc ; 141(30): 12147-12158, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31287669

RESUMO

Covalent macrocycles and three-dimensional cages were prepared by the self-assembly of di- or tritopic anilines and 2,6-diformylpyridine subcomponents around palladium(II) templates. The resulting 2,6-bis(imino)pyridyl-PdII motif contains a tridentate ligand, leaving a free coordination site on the PdII centers, which points inward. The binding of ligands to the free coordination sites in these assemblies was found to alter the product stability, and multitopic ligands could be used to control product size. Multitopic ligands also bridged metallomacrocycles to form higher-order supramolecular assemblies, which were characterized via NMR spectroscopy, mass spectrometry, and X-ray crystallography. An efficient method was developed to reduce the imine bonds to secondary amines, leading to fully organic covalent macrocycles and cages that were inaccessible through other means.

12.
Angew Chem Int Ed Engl ; 58(33): 11324-11328, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31173448

RESUMO

A rapid screening method based on traveling-wave ion-mobility spectrometry (TWIMS) combined with tandem mass spectrometry provides insight into the topology of interlocked and knotted molecules, even when they exist in complex mixtures, such as interconverting dynamic combinatorial libraries. A TWIMS characterization of structure-indicative fragments generated by collision-induced dissociation (CID) together with a floppiness parameter defined based on parent- and fragment-ion arrival times provide a straightforward topology identification. To demonstrate its broad applicability, this approach is applied here to six Hopf and two Solomon links, a trefoil knot, and a [3]catenate.

13.
Angew Chem Int Ed Engl ; 58(27): 9073-9077, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050842

RESUMO

A redox-switchable self-assembled ZnII 4 L6 cage was synthesized that contains naphthalenediimide (NDI) motifs. Its reduction lent these NDI panels persistent radical anion character. The redox activity of this cage allows it to act as a catalyst for the oxidative coupling of different tetraaryl borates to give biaryls. The catalytic activity of the cage was enhanced following its binding of C60 , which implies a mechanism that does not involve encapsulation of the substrate.

14.
Chem Commun (Camb) ; 53(48): 6468-6471, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28567458

RESUMO

Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.

15.
Chem Commun (Camb) ; 52(98): 14109-14112, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27858008

RESUMO

A calix[4]arene-based molecular box was synthesized. Its properties were characterized through XRD and extensive NMR studies. This receptor is able to encapsulate specifically two isolated water molecules in both non-protic and protic solvents. This is a consequence of high size, geometric and electronic complementarity between the host and the water molecules.

16.
Org Biomol Chem ; 14(6): 1950-7, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26751614

RESUMO

Cavity-based metal complexes can find many applications notably in the fields of catalysis and biomimicry. In this context, it was shown that metal complexes of calix[6]arenes bearing three aza-coordinating arms at the small rim provide excellent structural models of the poly-imidazole sites found in the active site of many metallo-enzymes. All these N-donor ligands were synthesized from the 1,3,5-tris-methoxy-p-tBu-calix[6]arene platform, which presents some limitations in terms of functionalization. Therefore, there is a need for the development of new calix[6]arene-based building-blocks selectively protected at the small rim. Herein we describe the regioselective one step synthesis of two calix[6]arenes decorated with triflate groups, i.e. X6H4Tf2 and X6H3Tf3, from the parent calix[6]arene X6H6. It is shown that the triflate groups can either act as protecting or deactivating groups, allowing the elaboration of sophisticated calixarene-based systems selectively functionalized at the large and/or at the small rim. In addition, X6H3Tf3 is functionalized on the A, B, and D rings and thus gives access to inherently chiral compounds, as demonstrated by the synthesis of a rare example of inherently chiral cavity-based metal complex.

17.
Org Lett ; 17(22): 5690-3, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26558889

RESUMO

The iteroselective "all-but-one" carbamatation methodology has been successfully extended to homooxacalixarenes and used for the selective and controlled synthesis of homooxacalixarene-monoquinones and calixarene-monoquinones. These moquinone derivatives constitute interesting molecular platforms that, until now, were inaccessible through any efficient means.

18.
J Org Chem ; 79(14): 6563-70, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24954636

RESUMO

General and efficient methods for selective modification of macrocyclic oligomers are rare, mostly because restricting a reaction to a defined number of identical functional groups is difficult to achieve. This work describes a unique, general, and rational methodology for the iteroselective functionalization of polyphenolic platforms by N-tert-butylaminocarbonyl (Bac) groups. The methodology consists of reacting the oligomeric platform with t-BuNCO and an inorganic base in an apolar solvent. This very simple one-step procedure has been applied to various calix[4, 5, 6, and 8]arenes, and in all cases, calixarenes with a single leftover phenolic moiety were isolated in high yields (>90%). Interestingly, this so-called "all-but-one" methodology gives a straightforward access to calixarenes displaying inherent chirality. It is also shown that the Bac group can be used as a protective group. Thus, the all-but-one methodology has been used for the efficient monofunctionalization of a key precursor platform, illustrating its huge potential for the tailored synthesis of sophisticated macrocyclic oligomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...