Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 17, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882570

RESUMO

The oscillating redox conditions that characterize coastal sandy sediments foster microbial communities capable of respiring oxygen and nitrate simultaneously, thereby increasing the potential for organic matter remineralization, nitrogen (N)-loss and emissions of the greenhouse gas nitrous oxide. It is unknown to what extent these conditions also lead to overlaps between dissimilatory nitrate and sulfate respiration. Here, we show that sulfate and nitrate respiration co-occur in the surface sediments of an intertidal sand flat. Furthermore, we found strong correlations between dissimilatory nitrite reduction to ammonium (DNRA) and sulfate reduction rates. Until now, the nitrogen and sulfur cycles were assumed to be mainly linked in marine sediments by the activity of nitrate-reducing sulfide oxidisers. However, transcriptomic analyses revealed that the functional marker gene for DNRA (nrfA) was more associated with microorganisms known to reduce sulfate rather than oxidise sulfide. Our results suggest that when nitrate is supplied to the sediment community upon tidal inundation, part of the sulfate reducing community may switch respiratory strategy to DNRA. Therefore increases in sulfate reduction rate in-situ may result in enhanced DNRA and reduced denitrification rates. Intriguingly, the shift from denitrification to DNRA did not influence the amount of N2O produced by the denitrifying community. Our results imply that microorganisms classically considered as sulfate reducers control the potential for DNRA within coastal sediments when redox conditions oscillate and therefore retain ammonium that would otherwise be removed by denitrification, exacerbating eutrophication.

2.
Environ Microbiol Rep ; 10(2): 179-183, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393582

RESUMO

Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer-scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2 S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2 S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations.


Assuntos
Chlorobium/metabolismo , Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo , Chlorobium/classificação , Chlorobium/genética , Chlorobium/isolamento & purificação , Transporte de Elétrons , Fixação de Nitrogênio , Fenótipo , Espectrometria de Massa de Íon Secundário
3.
Environ Microbiol ; 15(5): 1441-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22857133

RESUMO

Phaeocystis globosa is an ecologically important bloom-forming phytoplankton, which sequesters substantial amounts of inorganic carbon and can form carbon-enriched chitinous star-like structures. Viruses infecting P. globosa (PgVs) play a significant regulatory role in population dynamics of the host species. However, the extent to which viruses alter host physiology and its carbon assimilation on single cell level is still largely unknown. This study demonstrates for the first time the impact of viral infection on carbon assimilation and cell morphology of individual axenic P. globosa cells using two single cell techniques: high resolution nanometre-scale Secondary-Ion Mass Spectrometry (nanoSIMS) approach and atomic force microscopy (AFM). Up until viral lysis (19 h post infection), the bulk carbon assimilation by infected P. globosa cultures was identical to the assimilation by the non-infected cultures (33 µmol C l(-1)). However, single cell analysis showed that viral infection of P. globosa impedes the release of star-like structures. Non-infected cells transfer up to 44.5 µmol C l(-1) (36%) of cellular biomass in the form of star-like structures, suggesting a vital role in the survival of P. globosa cells. We hypothesize that impediment of star-like structures in infected P. globosa cells may inactivate viral infectivity by forming flocculants after cell lysis. Moreover, we show that substantial amounts of newly produced viruses (≈ 68%) were attached to P. globosa cells prior to cell lysis. Further, we speculate that infected cells become more susceptible for grazing which provides potential reasons for the sudden disappearance of PgVs in the environment. The scenarios of enhanced grazing is at odds to the current perspective that viral infections facilitates microbial mediated processes by diverting host material away from the higher trophic levels.


Assuntos
Quitina/metabolismo , Haptófitas/virologia , Vírus/metabolismo , Biomassa , Carbono/metabolismo , Haptófitas/citologia , Fitoplâncton/citologia , Fitoplâncton/virologia , Análise de Célula Única , Microbiologia da Água
4.
Appl Microbiol Biotechnol ; 63(2): 107-14, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12955353

RESUMO

Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle--the anammoxosome--in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.


Assuntos
Bactérias Anaeróbias/metabolismo , Água Doce/microbiologia , Compostos de Amônio Quaternário/metabolismo , Água do Mar/microbiologia , Anaerobiose , Reatores Biológicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...