Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 132: 105299, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671667

RESUMO

The exoskeletons of crustaceans are essential for providing protection from predators and other environmental threats. Understanding the structure and mechanical behavior of their natural armor could inspire the design of lightweight and high toughness synthetic materials. Most published work has focused on marine crustacea rather than their terrestrial counterparts, which are exposed to a multitude of unique threats. The interest in the terrestrial isopod Armadillidium vulgare (A. vulgare) has grown but the interrelationship between the microstructure, chemical composition, and mechanical properties has not been thoroughly investigated. Thus, this study aims to elucidate missing details concerning this biological mineralized composite. Exoskeleton specimens were fixated to preserve the intrinsic protein structure. We utilize scanning electron microscopy for microstructure analysis, Raman spectroscopy for elemental analysis, and nanoindentation property mapping to achieve mechanical characterization. The naturally fractured A. vulgare exoskeleton cross-section reveals four subregions with the repeating helicoidal 'Bouligand' arrangement most prominent in the endocuticle. The hardness and reduced modulus distributions exhibit a through-thickness exponential gradient with decreasing magnitudes from the outermost to the innermost layers of the exoskeleton. The Raman spectra show a graded spatial distribution of key constituents such as calcium carbonate across the thickness, some of which are consistent with the mechanical property gradient. Potential microstructure, elemental composition, and mechanical property relationships are discussed to explain how the hierarchical structure of this nanolaminate armor protects this species.


Assuntos
Isópodes , Animais , Carbonato de Cálcio/análise , Isópodes/química , Microscopia Eletrônica de Varredura , Análise Espectral Raman
2.
J Mech Behav Biomed Mater ; 73: 17-27, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27745845

RESUMO

Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respect to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.


Assuntos
Escamas de Animais/fisiologia , Peixes , Escamas de Animais/ultraestrutura , Animais
3.
ACS Nano ; 7(7): 5911-21, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23730850

RESUMO

The photoinduced formation of silver nanoprisms from smaller silver seed particles in the presence of citrate anions is a classic example of a photomorphic reaction. In this case, light is used as a convenient tool to dynamically manipulate the shape of metal nanoparticles. To date, very little is known about the prevailing reaction mechanism of this type of photoreaction. Here we provide a detailed study of the shape transformation dynamics as a function of a range of different process parameters, such as photon energy and photon flux. For the first time, we provide direct evidence that the photochemical synthesis of silver nanoprisms from spherical seed nanoparticles proceeds via a light-activated two-dimensional coalescence mechanism. On the other hand, we could show that Ostwald ripening becomes the dominant reaction mechanism when larger silver nanoprisms are grown from photochemically synthesized smaller nanoprisms. This two-step reaction proceeds significantly faster and yields more uniform, sharper nanoprisms than the classical one-step photodevelopment process from seeds. The ability to dynamically control nanoparticle shapes and properties with light opens up novel synthesis avenues but also, more importantly, allows one to conceive new applications that exploit the nonstatic character of these nanoparticles and the ability to control and adjust their properties at will in a highly dynamic fashion.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Modelos Químicos , Modelos Moleculares , Fotoquímica/métodos , Prata/química , Prata/efeitos da radiação , Anisotropia , Simulação por Computador , Luz , Teste de Materiais , Conformação Molecular/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...