Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138800

RESUMO

Graphene, a two-dimensional carbon allotrope with a honeycomb structure, has emerged as a material of immense interest in diverse scientific and technical domains. It is mainly produced from graphite by mechanical, chemical and electrochemical exfoliation. As renewable energy and source utilization increase, including bioenergy from forest and woody residues, processed, among other methods, by pyrolysis treatment, it can be expected that biochar production will increase too. Thus, its useful applications, particularly in obtaining high-added-value products, need to be fully explored. This study aims at presenting a comprehensive analysis derived from experimental data, offering insights into the potential of biomass pyrolysis-derived biochar as a versatile precursor for the controlled synthesis of graphene and its derivatives. This approach comprehended the highest energy output and lowest negative environmental footprint, including the minimization of both toxic gas emissions during processing and heavy metals' presence in the feedstock, toward obtaining biochar suitable to be modified, employing the Hummers and intercalation with persulfate salts methods, aiming at deriving graphene-like materials. Material characterization has revealed that besides morphology and structural features of the original wooden biomass, graphitized structures are present as well, which is proven clearly by Raman and XPS analyses. Electrochemical tests revealed higher conductivity in modified samples, implying their graphene-like nature.

2.
Glob Chall ; 7(9): 2300125, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37745822

RESUMO

This perspective discusses the challenges associated with the removal of cyanotoxins from raw water sources for drinking water treatment and the emergence of sulfate radical-based advanced oxidation processes (SR-AOPs) as an effective treatment technique. The advantage of SR-AOPs is that they can be activated using a variety of methods, including heat, UV radiation, and transition metal catalysts, allowing for greater flexibility in treatment design and optimization. In addition, the byproducts of SR-AOPs are less harmful than those generated by •OH-AOPs, which reduces the risk of secondary contamination. SR-AOPs generate sulfate radicals (SO4 •-) that are highly selective to certain organic contaminants and have lower reactivity to background water constituents, resulting in higher efficiency and selectivity of the process. The presence of natural organic matter and transition metals in the natural water body increases the degradation efficiency of SR-AOPs for the cyanotoxins. The bromate formation is also suppressed when the water contaminated with cyanotoxins is treated with SR-AOPs.

3.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500951

RESUMO

Fe2O3/TiO2 nanocomposites were fabricated via a facile impregnation/calcination technique employing different amounts iron (III) nitrate onto commercial TiO2 (P25 Aeroxide). The as-prepared Fe2O3/TiO2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDXS), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET), electron impedance spectroscopy (EIS), photoluminescence spectroscopy (PL), and diffuse reflectance spectroscopy (DRS). As a result, 5% (w/w) Fe2O3/TiO2 achieved the highest photocatalytic activity in the slurry system and was successfully immobilized on glass support. Photocatalytic activity under visible-light irradiation was assessed by treating pharmaceutical amoxicillin (AMX) in the presence and absence of additional oxidants: hydrogen peroxide (H2O2) and persulfate salts (PS). The influence of pH and PS concentration on AMX conversion rate was established by means of statistical planning and response surface modeling. Results revealed optimum conditions of [S2O82-] = 1.873 mM and pH = 4.808; these were also utilized in presence of H2O2 instead of PS in long-term tests. The fastest AMX conversion possessing a zero-order rate constant of 1.51 × 10-7 M·min-1 was achieved with the photocatalysis + PS system. The AMX conversion pathway was established, and the evolution/conversion of formed intermediates was correlated with the changes in toxicity toward Vibrio fischeri. Reactive oxygen species (ROS) scavenging was also utilized to investigate the AMX conversion mechanism, revealing the major contribution of photogenerated h+ in all processes.

4.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431908

RESUMO

Sustainable hydrogen production is one of the main challenges today in the transition to a green and sustainable economy. Photocatalytic hydrogen production is one of the most promising technologies, amongst which BiVO4-based processes are highly attractive due to their suitable band gap for solar-driven processes. However, the performance of BiVO4 alone in this role is often unsatisfactory. Herein we report the improvement of BiVO4 performance with reduced graphene oxide (rGO) as a co-catalyst for the photoelectrochemical water splitting (PEC-WS) in the presence of simple functionalized benzene derivatives (SFBDs), i.e., phenol (PH), benzoic acid (BA), salicylic acid (SA), and 5-aminosalicylic acid (5-ASA) as potential photogenerated hole scavengers from contaminated wastewaters. Linear sweep voltammetry and chronoamperometry, along with electrochemical impedance spectroscopy were utilized to elucidate PEC-WS performance under illumination. rGO has remarkably improved the performance of BiVO4 in this role by decreasing photogenerated charge recombination. In addition, 5-ASA greatly improved current densities. After 120 min under LED illumination, 0.53 µmol of H2 was produced. The type and concentration of SFBDs can have significant and at times opposite effects on the PEC-WS performance of both BiVO4 and rGO-BiVO4.

5.
Top Curr Chem (Cham) ; 380(6): 51, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180757

RESUMO

Solar-powered photocatalysis has come a long way since its humble beginnings in the 1990s, producing more than a thousand research papers per year over the past decade. In this review, immobilized photocatalysts operating under sunlight are highlighted. First, a literature review of solar-driven films is presented, along with some fundamental operational differences in relation to reactions involving suspended nanoparticles. Common strategies for achieving sunlight activity from films are then described, including doping, surface grafting, semiconductor coupling, and defect engineering. Synthetic routes to fabricate photocatalytically active films are briefly reviewed, followed by the important factors that determine solar photocatalysis efficiency, such as film thickness and structure. Finally, some important and specific characterization methods for films are described. This review shows that there are two main challenges in the study of photocatalytic materials in the form of (thin) films. First, the production of stable and efficient solar-driven films is still a challenge that requires an integrated approach from synthesis to characterization. The second is the difficulty in properly characterizing films. In any case, the research community needs to address these, as solar-driven photocatalytic films represent a viable option for sustainable air and water purification.


Assuntos
Energia Solar , Purificação da Água , Catálise , Semicondutores , Luz Solar , Purificação da Água/métodos
6.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335299

RESUMO

Advanced oxidation processes (AOPs) have been introduced to deal with different types of water pollution. They cause effective chemical destruction of pollutants, yet leading to a mixture of transformation by-products, rather than complete mineralization. Therefore, the aim of our study was to understand complex degradation processes induced by different AOPs from chemical and ecotoxicological point of view. Phenol, 2,4-dichlorophenol, and pentachlorophenol were used as model pollutants since they are still common industrial chemicals and thus encountered in the aquatic environment. A comprehensive study of efficiency of several AOPs was undertaken by using instrumental analyses along with ecotoxicological assessment. Four approaches were compared: ozonation, photocatalytic oxidation with immobilized nitrogen-doped TiO2 thin films, the sequence of both, as well as electrooxidation on boron-doped diamond (BDD) and mixed metal oxide (MMO) anodes. The monitored parameters were: removal of target phenols, dechlorination, transformation products, and ecotoxicological impact. Therefore, HPLC-DAD, GC-MS, UHPLC-MS/MS, ion chromatography, and 48 h inhibition tests on Daphnia magna were applied. In addition, pH and total organic carbon (TOC) were measured. Results show that ozonation provides by far the most suitable pattern of degradation accompanied by rapid detoxification. In contrast, photocatalysis was found to be slow and mild, marked by the accumulation of aromatic products. Preozonation reinforces the photocatalytic process. Regarding the electrooxidations, BDD is more effective than MMO, while the degradation pattern and transformation products formed depend on supporting electrolyte.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Oxirredução , Fenóis , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
7.
Environ Res ; 197: 110982, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711320

RESUMO

The synergistic effect of the photocatalytic ozonation process (PH-OZ) using the photocatalyst TiO2 is usually attributed to influences of the physicochemical properties of the catalyst, pollutant type, pH, temperature, O3 concentration, and other factors. It is also often claimed that good adsorption on the TiO2 surface is beneficial for the occurrence of synergism. Herein, we tested these assumptions by using five different commercial TiO2 photocatalysts (P25, PC500, PC100, PC10 and JRC-TiO-6) in three advanced oxidation systems - photocatalysis (O2/TiO2/UV), catalytic ozonation (O3/TiO2) and PH-OZ (O3/TiO2/UV) - for the degradation of two pollutants (dichloroacetic acid - DCAA and thiacloprid) simultaneously present in water. The synergistic effect in PH-OZ was much more pronounced in the case of thiacloprid, a molecule with low adsorption on the surface of the catalyst - in contrast to DCAA with stronger adsorption. The faster kinetics of catalytic ozonation (O3/TiO2) correlated with the higher exposed surface area of TiO2 agglomerates, independent of the (lower) BET surfaces of the primary particles. Nevertheless, DCAA mineralization on the TiO2 surface was much faster than thiacloprid degradation in solution. Therefore, we propose that a high BET surface area of the photocatalyst is crucial for fast surface reactions (DCAA mineralization), while good dispersion - the high exposed surface area of the (small) agglomerates - and charge separation play an important role in photocatalytic degradation or PH-OZ of less adsorbed organic pollutants (thiacloprid).


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Ácido Dicloroacético , Neonicotinoides , Tiazinas , Titânio , Raios Ultravioleta
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119481, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524821

RESUMO

In this work we performed dye photodegradation experiments in presence of TiO2 and Cu/Zr modified TiO2. The changes in the shape of the spectra of RB19 caused by photocatalysts under the simulated solar or UV light were monitored. Since the predominant photocatalytic mechanism can only be observed in very dilute solution of RB19, UV-Vis absorption spectrometry for higher concentrations and thermal lens spectrometry for lower concentrations have been applied to elucidate the mechanistic details of degradation processes. Bleaching of the dye was a characteristic feature, that occurred under both simulated solar and UV lights. It was also evident, that the absorption peak with maximum centered at 592 nm undergoes a slight blue shift during irradiation. The experiments carried out using UV and simulated solar light demonstrated, that two different processes responsible for the RB19 dye degradation occurred. In the initial stage of irradiation one of the processes appears under the UV light and can be recognized by a characteristic blue shift in the absorption spectrum of the solution. The second process is characteristic for irradiation by the simulated solar light which involve a blue shift at longer periods (100 min). These phenomena were attributed to the photocatalytic and photosensitization mechanisms, respectively. However, photocatalytic mechanism was also observed under simulated solar radiation, when the initial dye concentration was decreased to 5 mgL-1, and was recognized by the increase of the thermal lens signal during the initial stages of degradation process. This was possible because the thermal lens spectroscopy technique provides a limit of quantification for RB19 at the concentration level of 0.12 mg L-1, while UV-Vis spectrometry enables quantification of RB19 only down to 4 mg L-1 levels.

9.
Materials (Basel) ; 13(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183457

RESUMO

Clean water and the increased use of renewable energy are considered to be two of the main goals in the effort to achieve a sustainable living environment. The fulfillment of these goals may include the use of solar-driven photocatalytic processes that are found to be quite effective in water purification, as well as hydrogen generation. H2 production by water splitting and photocatalytic degradation of organic pollutants in water both rely on the formation of electron/hole (e-/h+) pairs at a semiconducting material upon its excitation by light with sufficient photon energy. Most of the photocatalytic studies involve the use of TiO2 and well-suited model compounds, either as sacrificial agents or pollutants. However, the wider application of this technology requires the harvesting of a broader spectrum of solar irradiation and the suppression of the recombination of photogenerated charge carriers. These limitations can be overcome by the use of different strategies, among which the focus is put on the creation of heterojunctions with another narrow bandgap semiconductor, which can provide high response in the visible light region. In this review paper, we report the most recent advances in the application of TiO2 based heterojunction (semiconductor-semiconductor) composites for photocatalytic water treatment and water splitting. This review article is subdivided into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting, to give a thorough examination of all achieved progress. The first part provides an overview on photocatalytic degradation mechanism principles, followed by the most recent applications for photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal oxides, transition metal chalcogenides, and multiple composites that were made of three or more semiconductor materials for photocatalytic water splitting.

10.
Materials (Basel) ; 12(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491947

RESUMO

F-La/TiO2 photocatalysts were studied in photocatalytic decomposition water-methanol solution. The structural, textural, optical, and electronic properties of F-La/TiO2 photocatalysts were studied by combination of X-ray powder diffraction (XRD), nitrogen physisorption, Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), Electrochemical impedance spectroscopy (EIS), and X-ray fluorescence (XPS). The production of hydrogen in the presence of 2.8F-La/TiO2 was nearly up to 3 times higher than in the presence of pure TiO2. The photocatalytic performance of F-La/TiO2 increased with increasing photocurrent response and conductivity originating from the higher amount of fluorine presented in the lattice of TiO2.

11.
Materials (Basel) ; 12(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288427

RESUMO

The number of commercial products claiming self-cleaning properties is rising and testing of long-term activity and durability of such coatings needs to be addressed more. The time-dependent changes of different characteristics like haze, transparency, and color are essential for transparent glazing materials. Herein, we aimed to examine whether the laboratory results obtained on the Zr-modified-titania-silica (TiZr) self-cleaning materials would translate to larger-scale outdoor-exposed testing. TiZr thin films were deposited via spraying onto float glass window surfaces and exposed into three different environments for 20 months. For comparison, a commercially available active SGG BIOCLEANTM glass and standard float glass were simultaneously exposed in the same conditions. It was shown that the self-cleaning property of either a commercial product or TiZr-coated float glass was not considerably effective in real field test conditions, although the previous laboratory tests showed pronounced photocatalytic activity of TiZr thin films. The inclination angle; however, was shown to have a considerable effect on the self-cleaning ability of samples, as did the rain patterns during the testing period. On the other hand, the anti-fogging effect of our TiZr material was very well expressed in controlled laboratory conditions (measuring droplet formation time) as well as in the real outdoor environment.

12.
Materials (Basel) ; 11(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314379

RESUMO

Self-cleaning and/or photocatalytic films on polymer substrates have found numerous applications during the past decades. However, the common demand for high-temperature post synthesis treatment limits the application to temperature resistant substrates only. Herein, we prepared self-cleaning photocatalytic films on four thermosensitive polymeric substrates: polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), and acryl coated polyester (PES) fabric (D2) with poly(vinylidene fluoride) (PVDF) containing lacquer (D1). TiO2 was prepared via a low-temperature sol-gel process using titanium(IV) isopropoxide and zirconium(IV) butoxide as precursors with various loading levels of Zr; 0, 5, 10, and 20 mol.%, and deposited on the substrates by using a SiO2 binder in form of thin films (ca. 200 nm thick) via dip-coating. The films were characterized by SEM, hardness test, UV-Vis, photothermal beam deflection spectroscopy, and IR spectroscopy, while photocatalytic activity was measured by the fluorescence-based method of the terephthalic acid probe and wetting by contact angle measurements. Films containing 10 mol.% of Zr showed the best compromise regarding photocatalytic activity and mechanical stability while from substrates point of view PVC performed the best, followed by PMMA, D1, and D2. The beneficial role of SiO2 binder was not only guaranteeing excellent mechanical stability, but also to prevent the D1 polymer from deterioration; the latter was found to be labile to long-term solar-light exposure due to degradation of the top PVDF layer.

14.
Appl Microbiol Biotechnol ; 98(5): 1925-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24384751

RESUMO

Photocatalytic coatings are considered sustainable materials as they only need sunlight for their activation and regeneration. Some photocatalytic disinfecting coatings are already commercialized, but many more are still in the developmental stage. Efficient and reliable analytical methodologies for testing the antimicrobial effects of photocatalytic coatings should therefore be used and further developed (1) to avoid inactive or unstable final products, (2) to allow fast, reproducible, and inexpensive antimicrobial activity measurements, and (3) to reflect real environmental conditions and challenges for these materials. Aiming to improve the existing methodologies of antimicrobial testing, this mini review summarizes and discusses the testing parameters and procedures in this expanding research field, including research on antimicrobial activity of photocatalytic coatings for different applications, i.e., self-cleaning/disinfecting coatings (films) and photocatalytic coatings for water and air treatment/disinfection.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Microbiologia Ambiental , Processos Fotoquímicos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...