Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(12): 2967-2970, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709027

RESUMO

We show here that light polarization of a beam propagating through a heliconical cholesteric cell can be controlled by tuning the Bragg resonance of the structure. We demonstrate that this control is achieved by varying either the low-frequency electric field or the intensity of a pump beam impinging on the sample. The study confirms the recently reported phenomenon of optical tuning of the heliconical cholesterics and opens the door for the development of simple and efficient polarization modulators controlled electrically or optically.

2.
Nano Lett ; 18(11): 6770-6777, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30351961

RESUMO

We showed large area uniformly aligned chiral photonic bioderived films from a liquid crystal phase formed by a cellulose nanocrystal (CNC) suspension placed in a thin capillary. As a result of the spatial confinement of the drying process, the interface between coexisting isotropic and chiral phases aligns perpendicular to the long axis of the capillary. This orientation facilitates a fast homogeneous growth of chiral pseudolayers parallel to the interface. Overall, the formation of organized solids takes hours vs weeks in contrast to the slow and heterogeneous process of drying from the traditional dish-cast approach. The saturation of water vapor in one end of the capillary causes anisotropic drying and promotes unidirectional propagation of the anisotropic phase in large regions that results in chiral CNC solid films with a uniformly oriented layered morphology. Corresponding ordering processes were monitored in situ at a nanoscale, mesoscale, and microscopic scale with complementary scattering and microscopic techniques. The resulting films show high orientation order at a multilength scale over large regions and preserved chiral handedness causing a narrower optical reflectance band and uniform birefringence over macroscopic regions in contrast to traditional dish-cast CNC films and those assembled in a magnetic field and on porous substrates. These thin films with a controllable and well-identified uniform morphology, structural colors, and handedness open up interesting possibilities for broad applications in bioderived photonic nanomaterials.

3.
Phys Chem Chem Phys ; 18(46): 31645-31652, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27834978

RESUMO

The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant K. The magnitude of K is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼106 Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the "pseudo-layer" structure of the TB phase with Beff in the range 103-104 Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director.

4.
Phys Rev E ; 94(4-1): 042705, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841485

RESUMO

We present studies of chiral nematic liquid crystals composed of flexible dimer molecules subject to large dc magnetic fields between 0 and 31 T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. The use of magnetic field here instead of electric field allows precise measurements of some material constants and holds promise for wireless tuning of selective reflection.

5.
Phys Rev Lett ; 115(8): 087801, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340209

RESUMO

We report on the first direct nanoscale imaging of elementary edge dislocations in a thermotropic smectic-C* liquid crystal with the Burgers vector equal to one smectic layer spacing d. We find two different types of dislocation profiles. In the dislocation of type A, the layers deformations lack mirror symmetry with respect to the plane perpendicular to the Burgers vector; the dislocation core size is on the order of d. In the dislocation of type S, the core is strongly anisotropic, extending along the Burgers vector over distances much larger (by a factor of 4) than d. The difference is attributed to a different orientation of the molecular tilt plane with respect to the dislocation's axis; the asymmetric layers distortions are observed when the molecular tilt plane is perpendicular to the axis and the split S core is observed when the molecules are tilted along the line.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25019707

RESUMO

We present magneto-optic measurements on two materials that form the recently discovered twist-bend nematic (N_{tb}) phase. This intriguing state of matter represents a fluid phase that is orientationally anisotropic in three directions and also exhibits translational order with periodicity several times larger than the molecular size. N_{tb} materials may also spontaneously form a visible, macroscopic stripe texture. We show that the optical stripe texture can be persistently inhibited by a magnetic field, and a 25T external magnetic field depresses the N-N_{tb} phase transition temperature by almost 1{∘}C. We propose a quantitative mechanism to account for this shift and suggest a Helfrich-Hurault-type mechanism for the optical stripe formation.


Assuntos
Cristais Líquidos/química , Campos Magnéticos , Modelos Químicos , Estrutura Molecular , Temperatura de Transição
7.
Nat Commun ; 5: 3302, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24548912

RESUMO

The B4 phase of bent-core liquid crystals has been shown to be an assembly of twisted layers stacked to form helical nanofilaments. Interestingly, some of them have structural colours that cannot be explained by the nanofilaments alone. Here cryogenic-transmission electron microscopy observations on 40-120 nm films of four bent-core liquid crystal materials show that the filaments are present even in contact with a carbon substrate with only minor deformation, thus representing bulk properties. We find that the subsequent arrays of nanofilaments are not parallel to each other, but rotate by an angle of 35-40° with respect to each other. This doubly twisted structure can explain the structural colour. Being principally different from the packing of molecules in the twist grain boundary and blue phases, the double-twist structure of helical nanofilaments expands the rich word of nanostructured organic materials.

8.
Science ; 342(6164): 1351-4, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24337292

RESUMO

In the simplest realization of Brownian motion, a colloidal sphere moves randomly in an isotropic fluid; its mean squared displacement (MSD) grows linearly with time τ. Brownian motion in an orientationally ordered fluid--a nematic--is anisotropic, with the MSD being larger along the axis of molecular orientation, called the director. We found that at short time scales, the anisotropic diffusion in a nematic becomes anomalous, with the MSD growing slower or faster than τ; these states are respectively termed subdiffusion and superdiffusion. The anomalous diffusion occurs at time scales that correspond to the relaxation times of director deformations around the sphere. Once the nematic melts, the diffusion becomes normal and isotropic. Our experiment shows that the deformations and fluctuations of long-range orientational order profoundly influence diffusive regimes.

9.
Nat Commun ; 4: 2635, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189583

RESUMO

A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt).

10.
Phys Rev Lett ; 108(25): 257801, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004658

RESUMO

Deuteron nuclear magnetic resonance is used to study the phase segregation behavior of photoisomerizable liquid crystal diheptylazobenzene (7AB) confined into cylindrical pores of Anopore membranes. It is demonstrated that the concentration of both components in a binary trans-7AB and cis-7AB mixture can be controlled dynamically using UV-illumination stimulated trans-to-cis photoisomerization and thermally induced cis-to-trans backisomerization. The so far elusive temperature-concentration phase diagram of such system is determined by comparative analysis of the behavior in bulk, thin-planar, and Anopore-confining geometry.


Assuntos
Cristais Líquidos/química , Modelos Químicos , Compostos Azo/química , Deutério , Isomerismo , Espectroscopia de Ressonância Magnética/métodos , Membranas Artificiais , Transição de Fase , Processos Fotoquímicos
11.
Phys Rev Lett ; 109(3): 037801, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861899

RESUMO

Using a magnetic Frederiks transition technique, we measure the temperature and concentration dependences of splay K1, twist K2, and bend K3 elastic constants for the lyotropic chromonic liquid crystal sunset yellow formed through noncovalent reversible aggregation of organic molecules in water. K1 and K3 are comparable to each other and are an order of magnitude higher than K2. At higher concentrations and lower temperatures, K1 and the ratios K1/K3 and K1/K2 increase, which is attributed to elongation of self-assembled lyotropic chromonic liquid crystal aggregates, a feature not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of a fixed length.

12.
Phys Rev Lett ; 105(1): 017801, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867479

RESUMO

The surface alignment of lyotropic chromonic liquid crystals can not only be planar (tangential) but also homeotropic, with self-assembled aggregates perpendicular to the substrate, as demonstrated by mapping optical retardation and by three-dimensional imaging of the director field. With time, the homeotropic nematic undergoes a transition into a tangential state. The anchoring transition is discontinuous and can be described by a double-well anchoring potential with two minima corresponding to tangential and homeotropic orientation.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041711, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230299

RESUMO

We study optical, structural, and surface anchoring properties of thermotropic nematic bent-core material A131. The focus is on the features associated with orientational order as the material has been reported to exhibit not only the usual uniaxial nematic but also the biaxial nematic phase. We demonstrate that A131 experiences a surface anchoring transition from a perpendicular to tilted alignment when the temperature decreases. The features of the tilted state are consistent with surface-induced birefringence associated with smectic layering near the surface and a molecular tilt that changes along the normal to the substrates. The surface-induced birefringence is reduced to zero by a modest electric field that establishes a uniform uniaxial nematic state. Both refractive and absorptive optical properties of A131 are consistent with the uniaxial order. We found no evidence of the "polycrystalline" biaxial behavior in the cells placed in crossed electric and magnetic fields. We observe stable topological point defects (boojums and hedgehogs) and nonsingular "escaped" disclinations pertinent only to the uniaxial order. Finally, freely suspended films of A131 show uniaxial nematic and smectic textures; a decrease in the film thickness expands the temperature range of stability of smectic textures, supporting the idea of surface-induced smectic layering. Our conclusion is that A131 features only a uniaxial nematic phase and that the apparent biaxiality is caused by subtle surface effects rather than by the bulk biaxial phase.

14.
Phys Rev Lett ; 99(12): 127802, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17930554

RESUMO

We study electric-field-induced dynamics of colloids in a nematic cell, experimentally and by computer simulations. Solid particles in the nematic bulk create director distortions of dipolar type. Elastic repulsion from the walls keeps the particles in the middle of cell. The ac electric field reorients the dipoles and lifts them to top or bottom, depending on dipole orientation. Once near the walls, the colloids are carried along two antiparallel horizontal directions by nematic backflow. Computer simulations of the backflow agree with the experiment.

15.
Phys Rev Lett ; 98(5): 057801, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358900

RESUMO

Glycerol droplets at a nematic-liquid-crystal-air interface form two different lattices--hexagonal and dense quasihexagonal--which are separated by the energy barrier and can coexist. Director distortions around each droplet form an elastic dipole. The first order transition between the two lattices is driven by a reduction of the dipole-dipole repulsion through reorientation of these dipoles. The elastic-capillary attraction is essential for the both lattices. The effect has a many-body origin.

16.
Phys Rev Lett ; 98(9): 097801, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17359197

RESUMO

We report on a thermodielectric bistability in dual frequency nematic liquid crystals (LCs) caused by the anisotropic nature of dielectric heating and director reorientation in an electric field. The bistability is a result of the positive feedback loop: director reorientation --> anisotropic dielectric heating --> dielectric anisotrophy --> director reorientation. We demonstrate both experimentally and theoretically that two states with different temperature and director orientation, namely, a cold planar state and a hot homeotropic state coexist in a LC cell for a certain frequency and amplitude range of the applied voltage.


Assuntos
Temperatura Baixa , Eletricidade , Calefação , Cristais Líquidos/química , Dinâmica não Linear , Modelos Teóricos
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 1): 061703, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18233857

RESUMO

Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( +/-15 degrees in Y104 and +/-7 degrees in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 1): 041702, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17155073

RESUMO

The transition from surface to bulk normal dielectric rolls in a nematic liquid crystal is imaged by fluorescence confocal polarizing microscopy. The three-dimensional director structure and the liquid flow are scanned in both the layer plane and the transverse plane. Two systems of small-scale convective flow are formed, one at each electrode. Strong anchoring makes director oscillations difficult and charges accumulate by the Carr-Helfrich mechanism. The middle region is a structureless convection where the director oscillates with the frequency of the applied voltage. The small-scale flow eventually fills the cell from one electrode to the other as one system of thin and elongated rolls. The true dielectric mode is not a director pattern, rather a surface flow instability.

19.
Phys Rev Lett ; 97(15): 159801; discussion 159802, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-17155372
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 011712, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907116

RESUMO

We study the undulations instability, also known as the Helfrich-Hurault or layers buckling effect, in a cholesteric liquid crystal confined between two parallel plates and caused by an electric field applied along the normal to layers. The cholesteric pitch is much smaller than the cell thickness but sufficiently large for optical study. The three-dimensional patterns of the undulating layers in the bulk and at the surfaces of the cells are determined by fluorescence confocal polarizing microscopy. We demonstrate that the finite surface anchoring at the bounding plates plays a crucial role in the system behavior both near and well above the undulations threshold. The displacement of the layers immediately above the undulation threshold is much larger than the value expected from the theories that assume an infinitely strong surface anchoring. We describe the experimentally observed features by taking into account the finite surface anchoring at the bounding plates and using Lubensky-de Gennes coarse-grained elastic theory of cholesteric liquid crystals. Fitting the data allows us to determine the polar anchoring coefficient Wp and shows that Wp varies strongly with the type of substrates. As the applied field increases well above the threshold value Ec, the layers profile changes from sinusoidal to the sawtooth one. The periodicity of distortions increases through propagation of edge dislocations in the square lattice of the undulations pattern. At E approximately 1.9Ec a phenomenon is observed: the two-dimensional square lattice of undulations transforms into the one-dimensional periodic stripes. The stripes are formed by two sublattices of defect walls of parabolic shape. The main reason for the structure is again the finite surface anchoring, as the superposition of parabolic walls allows the layers to combine a significant tilt in the bulk of the cell with practically unperturbed orientation of layers near the bounding plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...