Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5093-5103, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578845

RESUMO

Recent advances in single-particle photothermal circular dichroism (PT CD) and photothermal magnetic circular dichroism (PT MCD) microscopy have shown strong promise for diverse applications in chirality and magnetism. Photothermal circular dichroism microscopy measures direct differential absorption of left- and right-circularly polarized light by a chiral nanoobject and thus can measure a pure circular dichroism signal, which is free from the contribution of circular birefringence and linear dichroism. Photothermal magnetic circular dichroism, which is based on the polar magneto-optical Kerr effect, can probe the magnetic properties of a single nanoparticle (of sizes down to 20 nm) optically. Single-particle measurements enable studies of the spatiotemporal heterogeneity of magnetism at the nanoscale. Both PT CD and PT MCD have already found applications in chiral plasmonics and magnetic nanomaterials. Most importantly, the advent of these microscopic techniques opens possibilities for many novel applications in biology and nanomaterial science.

2.
ACS Appl Mater Interfaces ; 15(33): 39946-39955, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37581258

RESUMO

Magnetic racetrack memory has significantly evolved and developed since its first experimental verification and is considered one of the most promising candidates for future high-density on-chip solid-state memory. However, both the lack of a fast and precise magnetic domain wall (DW) shifting mechanism and the required extremely high DW motion (DWM) driving current make the racetrack difficult to commercialize. Here, we propose a method for coherent DWM that is free from the above issues, which is driven by chirality switching (CS) and an ultralow spin-orbit-torque (SOT) current. The CS, as the driving force of DWM, is achieved by the sign change of the Dzyaloshinskii-Moriya interaction, which is further induced by a ferroelectric switching voltage. The SOT is used to break the symmetry when the magnetic moment is rotated in the Bloch direction. We numerically investigate the underlying principle and the effect of key parameters on the DWM by micromagnetic simulations. Under the CS mechanism, a fast (∼102 m/s), ultralow energy (∼5 attoJoule), and precisely discretized DWM can be achieved. Considering that skyrmions with topological protection and smaller size are also promising for future racetracks, we similarly evaluate the feasibility of applying such a CS mechanism to a skyrmion. However, we find that the CS causes it to "breathe" instead of moving. Our results demonstrate that the CS strategy is suitable for future DW racetrack memory with ultralow power consumption and discretized DWM.

3.
Nano Lett ; 23(15): 7070-7075, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466639

RESUMO

The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.

4.
Nano Lett ; 20(12): 8563-8568, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33238096

RESUMO

Topologically protected magnetic structures provide a robust platform for low power consumption devices for computation and data storage. Examples of these structures are skyrmions, chiral domain walls, and spin spirals. Here, we use scanning electron microscopy with polarization analysis to unveil the presence of chiral counterclockwise Néel spin spirals at the surface of a bulk van der Waals ferromagnet Fe3GeTe2 (FGT) at zero magnetic field. These Néel spin spirals survive up to FGT's Curie temperature of TC = 220 K, with little change in the periodicity p = 300 nm of the spin spiral throughout the studied temperature range. The formation of a spin spiral showing counterclockwise rotation strongly suggests the presence of a positive Dzyaloshinskii-Moriya interaction in FGT, which provides the first steps towards the understanding of the magnetic structure of FGT. Our results additionally pave the way for chiral magnetism in van der Waals materials and their heterostructures.

5.
Nat Commun ; 11(1): 3835, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737310

RESUMO

Ever since its discovery around a decade ago, all-optical magnetization switching (AOS) using femtosecond laser pulses has shown potential for future data storage and logic devices. In particular, single pulse helicity independent AOS in certain ferrimagnetic alloys and multilayers is highly efficient and ultrafast. However, in most cases it is a toggle mechanism, which is not desirable for applications. Here we experimentally demonstrate conversion from toggle switching to a deterministic mechanism by biasing AOS in a Co/Gd bilayer with a spin polarized current which is optically generated in an adjacent ferromagnetic reference layer. We show deterministic writing of an 'up' and 'down' state using a sequence of one or two pulses, respectively, and demonstrate the non-local origin by varying the magnitude of the generated spin current. Our demonstration of deterministic magnetization writing could provide an essential step towards the implementation of future optically addressable spintronic memory devices.

6.
Phys Rev Lett ; 124(20): 207203, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501071

RESUMO

Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, determines the chiral nature of magnetic textures such as skyrmions, domain walls, or spin spirals. Current research focuses on identifying and controlling the interactions that define the magnetic chirality in thin film multilayers. The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) and, recently, the dipolar interactions have been reported. Here, we experimentally demonstrate that an indirect interlayer exchange interaction can be used as an additional tool to effectively manipulate the magnetic chirality. We image the chirality of magnetic domain walls in a coupled bilayer system using scanning electron microscopy with polarization analysis. Upon increasing the interlayer exchange coupling, we induce a transition of the magnetic chirality from clockwise rotating Néel walls to degenerate Bloch-Néel domain walls and we confirm our findings with micromagnetic simulations. In multilayered systems relevant for skyrmion research, a uniform magnetic chirality across the magnetic layers is often desired. Additional simulations show that this can be achieved for reduced IDMI values (up to 30%) when exploiting the interlayer exchange interaction. This work opens up new ways to control and tailor the magnetic chirality by the interlayer exchange interaction.

7.
Phys Rev Lett ; 123(15): 157201, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702306

RESUMO

The stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis in archetype Pt/CoB/Ir thin film multilayers. We further demonstrate the competition between the Dzyaloshinskii-Moriya and dipolar interactions by imaging a reversal of the domain wall chirality as a function of the magnetic layer thickness. Finally, we suggest that this competition can be tailored by a Ruderman-Kittel-Kasuya-Yosida interaction. Our work therefore reveals that dipolar interactions play a key role in the stabilization of chiral spin textures. This insight will open up new routes towards balancing interactions for the stabilization of chiral magnetism.

8.
ACS Omega ; 4(5): 9262-9270, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460015

RESUMO

The water splitting activity of hematite is sensitive to the film processing parameters due to limiting factors such as a short hole diffusion length, slow oxygen evolution kinetics, and poor light absorptivity. In this work, we use direct current (DC) magnetron sputtering as a fast and cost-effective route to deposit metallic iron thin films, which are annealed in air to obtain well-adhering hematite thin films on F:SnO2-coated glass substrates. These films are compared to annealed hematite films, which are deposited by reactive radio frequency (RF) magnetron sputtering, which is usually used for depositing metal oxide thin films, but displays an order of magnitude lower deposition rate. We find that DC sputtered films have much higher photoelectrochemical activity than reactive RF sputtered films. We show that this is related to differences in the morphology and surface composition of the films as a result of the different processing parameters. This in turn results in faster oxygen evolution kinetics and lower surface and bulk recombination effects. Thus, fabricating hematite thin films by fast and cost-efficient metallic iron deposition using DC magnetron sputtering is shown to be a valid and industrially relevant route for hematite photoanode fabrication.

9.
Nat Mater ; 18(8): 905, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31239552

RESUMO

In the version of this Article originally published, the sentence 'D.-S.H. wrote the paper with K.L., J.H. and M.K.' in the author contributions was incorrect; it should have read 'D.-S.H. wrote the paper with K.L., J.H., M.-H.J. and M.K.' This has been corrected in the online versions of the Article.

10.
Nat Mater ; 18(7): 703-708, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160801

RESUMO

The exchange interaction governs static and dynamic magnetism. This fundamental interaction comes in two flavours-symmetric and antisymmetric. The symmetric interaction leads to ferro- and antiferromagnetism, and the antisymmetric interaction has attracted significant interest owing to its major role in promoting topologically non-trivial spin textures that promise fast, energy-efficient devices. So far, the antisymmetric exchange interaction has been found to be rather short ranged and limited to a single magnetic layer. Here we report a long-range antisymmetric interlayer exchange interaction in perpendicularly magnetized synthetic antiferromagnets with parallel and antiparallel magnetization alignments. Asymmetric hysteresis loops under an in-plane field reveal a unidirectional and chiral nature of this interaction, which results in canted magnetic structures. We explain our results by considering spin-orbit coupling combined with reduced symmetry in multilayers. Our discovery of a long-range chiral interaction provides an additional handle to engineer magnetic structures and could enable three-dimensional topological structures.

11.
Nanomaterials (Basel) ; 8(7)2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29966338

RESUMO

Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. This work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.

12.
ACS Nano ; 11(11): 11066-11073, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29072836

RESUMO

Three-dimensional (3D) nanomagnetic devices are attracting significant interest due to their potential for computing, sensing, and biological applications. However, their implementation faces great challenges regarding fabrication and characterization of 3D nanostructures. Here, we show a 3D nanomagnetic system created by 3D nanoprinting and physical vapor deposition, which acts as a conduit for domain walls. Domains formed at the substrate level are injected into a 3D nanowire, where they are controllably trapped using vectorial magnetic fields. A dark-field magneto-optical method for parallel, independent measurement of different regions in individual 3D nanostructures is also demonstrated. This work will facilitate the advanced study and exploitation of 3D nanomagnetic systems.

13.
Nanotechnology ; 27(15): 155203, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26938688

RESUMO

Magnetic kink solitons are used as a probe to experimentally measure the layer-by-layer coercivity and interlayer coupling strength of an antiferromagnetically coupled perpendicularly magnetized Co multilayer. The magnetic response is well described by a nearest neighbor Ising macrospin model. By controlling the position of one, two or three solitons in the stack using globally applied magnetic fields, we successfully probe the switching of individual buried layers under different neighboring configurations, allowing us to access individual layer's characteristic parameters. We found the coercivity to increase dramatically up the multilayer, while the interlayer coupling strength decreased slightly. We corroborate these findings with scanning transmission electron microscopy images where a degrading quality of the multilayer is observed. This method provides a very powerful tool to characterize the quality of individual layers in complex multilayers, without the need for depth-sensitive magnetic characterization equipment.

14.
Nat Commun ; 6: 7635, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154986

RESUMO

In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii-Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction.

15.
Nanotechnology ; 25(10): 105201, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24531860

RESUMO

Spintronic devices have in general demonstrated the feasibility of non-volatile memory storage and simple Boolean logic operations. Modern microprocessors have one further frequently used digital operation: bit-wise operations on multiple bits simultaneously. Such operations are important for binary multiplication and division and in efficient microprocessor architectures such as reduced instruction set computing (RISC). In this paper we show a four-stage vertical serial shift register made from RKKY coupled ultrathin (0.9 nm) perpendicularly magnetised layers into which a 3-bit data word is injected. The entire four stage shift register occupies a total length (thickness) of only 16 nm. We show how under the action of an externally applied magnetic field bits can be shifted together as a word and then manipulated individually, including being brought together to perform logic operations. This is one of the highest level demonstrations of logic operation ever performed on data in the magnetic state and brings closer the possibility of ultrahigh density all-magnetic microprocessors.

16.
Nature ; 493(7434): 647-50, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23364743

RESUMO

One of the key challenges for future electronic memory and logic devices is finding viable ways of moving from today's two-dimensional structures, which hold data in an x-y mesh of cells, to three-dimensional structures in which data are stored in an x-y-z lattice of cells. This could allow a many-fold increase in performance. A suggested solution is the shift register--a digital building block that passes data from cell to cell along a chain. In conventional digital microelectronics, two-dimensional shift registers are routinely constructed from a number of connected transistors. However, for three-dimensional devices the added process complexity and space needed for such transistors would largely cancel out the benefits of moving into the third dimension. 'Physical' shift registers, in which an intrinsic physical phenomenon is used to move data near-atomic distances, without requiring conventional transistors, are therefore much preferred. Here we demonstrate a way of implementing a spintronic unidirectional vertical shift register between perpendicularly magnetized ferromagnets of subnanometre thickness, similar to the layers used in non-volatile magnetic random-access memory. By carefully controlling the thickness of each magnetic layer and the exchange coupling between the layers, we form a ratchet that allows information in the form of a sharp magnetic kink soliton to be unidirectionally pumped (or 'shifted') from one magnetic layer to another. This simple and efficient shift-register concept suggests a route to the creation of three-dimensional microchips for memory and logic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...