Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(32): 42917-42930, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102288

RESUMO

Material thermal conductivity is a key factor in various applications, from thermal management to energy harvesting. With microstructure engineering being a widely used method for customizing material properties, including thermal properties, understanding and controlling the role of extended phonon-scattering defects, like grain boundaries, is crucial for efficient material design. However, systematic studies are still lacking primarily due to limited tools. In this study, we demonstrate an approach for measuring grain boundary thermal resistance by probing the propagation of thermal waves across grain boundaries with a temperature-sensitive scanning probe. The method, implemented with a spatial resolution of about 100 nm on finely grained Nb-substituted SrTiO3 ceramics, achieves a detectability of about 2 × 10-8 K m2 W-1, suitable for chalcogenide-based thermoelectrics. The measurements indicated that the thermal resistance of the majority of grain boundaries in the STiO3 ceramics is below this value. While there are challenges in improving sensitivity, considering spatial resolution and the amount of material involved in the detection, the sensitivity of the scanning probe method is comparable to that of optical thermoreflectance techniques, and the method opens up an avenue to characterize thermal resistance at the level of single grain boundaries and domain walls in a spectrum of microstructured materials.

2.
bioRxiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39131373

RESUMO

Epithelial cells experience long lasting loads of different magnitudes and rates. How they adapt to these loads strongly impacts tissue health. Yet, much remains unknown about their stress evolution under sustained strain. Here, by subjecting cell pairs to sustained strain, we report a bimodal stress response, where in addition to the typically observed stress relaxation, a subset of cells exhibits a dynamic tensioning process with significant elevation in stress within 100s, resembling active pulling-back in muscle fibers. Strikingly, the fraction of cells exhibiting tensioning increases with increasing strain rate. The tensioning response is accompanied by actin remodeling, and perturbation to actin abrogates it, supporting cell contractility's role in the response. Collectively, our data show that epithelial cells adjust their tensional states over short timescales in a strain-rate dependent manner to adapt to sustained strains, demonstrating that the active pulling-back behavior could be a common protective mechanism against environmental stress.

3.
Langmuir ; 40(28): 14257-14265, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38949567

RESUMO

Surface texturing of manufactured products tailors their properties, such as friction, adhesion, biocompatibility, or fluid interactions. However, advancements in this area are largely the result of trial-and-effort testing and generally lack a science-guided framework for determining the surface topography that will optimize performance. The present investigation explores grayscale electron-beam lithography as a means to create multiscale surface patterns to control surface performance. Here, we created and characterized a set of surface textures on a silicon wafer; the textures were superpositions of sine waves of varying wavelengths and amplitudes. First, the multiscale topography of the patterned surface was characterized, using profilometry and atomic force microscopy, to understand its fidelity to the designed-in pattern. The results of this analysis demonstrated how grayscale lithography accurately controlled the lateral size of features but was less precise on the vertical height of the surface, and also introduced inherent roughness below the scale of patterning. Second, a micromechanical tester was used to characterize the adhesion of the surfaces with large-scale polished silicon spheres. The results showed that adhesion could be tailored, with significant contribution from all of the designed-in length scales of topography. The strength of adhesion did not correlate with conventional roughness parameters but could be accurately modeled using simple numerical integration. Taken together, this investigation demonstrates the promise and challenges of grayscale e-beam lithography with multiscale patterns as a method for the tailoring of surface performance.

4.
Angew Chem Int Ed Engl ; 63(30): e202405634, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742923

RESUMO

In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 µm and length varied from 50.5 µm to 146 µm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.


Assuntos
Carbono , Dopamina , Eletrodos , Impressão Tridimensional , Animais , Dopamina/análise , Carbono/química , Técnicas Eletroquímicas/instrumentação , Drosophila , Drosophila melanogaster
5.
Anal Chem ; 96(22): 9177-9184, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780285

RESUMO

We describe micro- and nanoelectrode array analysis with an automated version of the array microcell method (AMCM). Characterization of hundreds of electrodes, with diameters ranging from 100 nm to 2 µm, was carried out by using AMCM voltammetry and chronoamperometry. The influence of solvent evaporation on mass transport in the AMCM pipette and the resultant electrochemical response were investigated, with experimental results supported by finite element method simulations. We also describe the application of AMCM to high-throughput single-entity electrochemistry in measurements of stochastic nanoparticle impacts. Collision experiments recorded 3270 single-particle events from 671 electrodes. Data collection parameters were optimized to enable these experiments to be completed in a few hours, and the collision transient sizes were analyzed with a U-Net deep learning model. Elucidation of collision transient sizes by histograms from these experiments was enhanced due to the large sample size possible with AMCM.

6.
Langmuir ; 40(13): 7008-7020, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525827

RESUMO

The polymer brush architecture of the end-tethered polymer molecules is one of the most widely used efficient methods to regulate interfacial interactions in colloidal systems found in live matter and manufactured materials. Emerging applications of polymer brush structures require solutions to new tasks in the control of interfacial interactions. The rapid development of live cell manufacturing relies on scalable and efficient cell harvesting methods. Stimuli-responsive surfaces made of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) can bind and detach the adherent cell upon changes in temperature and have been used for cell growth and harvesting. The applications are limited by the requirement to satisfy a range of PNIPAM coating characteristics that depend on the dimensions of the integrin complex in the cell membrane and the basal surface. The analysis of the microstructured surfaces, when adhesive and disjoining functions of the microdomains are decoupled, shows that many limitations of PNIPAM one-component coatings can be avoided by using a much broader range of structural characteristics of the microstructured interfaces composed of alternating disjoining PNIPAM domains and adhesive polymeric domains with cell-affinity functional groups. Temperature-controlled reversible adhesion to such microstructured interfaces is studied here experimentally with model systems of solid spherical particles and by employing simulations for solid and soft membranes interacting with the microstructured surfaces to mimic interactions with soft and solid disk-like particles.

7.
Magn Reson Med ; 91(6): 2431-2442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38368618

RESUMO

PURPOSE: We report the design concept and fabrication of MRI phantoms, containing blocks of aligned microcapillaires that can be stacked into larger arrays to construct diameter distribution phantoms or fractured, to create a "powder-averaged" emulsion of randomly oriented blocks for vetting or calibrating advanced MRI methods, that is, diffusion tensor imaging, AxCaliber MRI, MAP-MRI, and multiple pulsed field gradient or double diffusion-encoded microstructure imaging methods. The goal was to create a susceptibility-matched microscopically anisotropic but macroscopically isotropic phantom with a ground truth diameter that could be used to vet advanced diffusion methods for diameter determination in fibrous tissues. METHODS: Two-photon polymerization, a novel three-dimensional printing method is used to fabricate blocks of capillaries. Double diffusion encoding methods were employed and analyzed to estimate the expected MRI diameter. RESULTS: Susceptibility-matched microcapillary blocks or modules that can be assembled into large-scale MRI phantoms have been fabricated and measured using advanced diffusion methods, resulting in microscopic anisotropy and random orientation. CONCLUSION: This phantom can vet and calibrate various advanced MRI methods and multiple pulsed field gradient or diffusion-encoded microstructure imaging methods. We demonstrated that two double diffusion encoding methods underestimated the ground truth diameter.


Assuntos
Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Capilares , Imagens de Fantasmas , Anisotropia , Impressão Tridimensional , Imagem de Difusão por Ressonância Magnética/métodos
8.
ACS Appl Mater Interfaces ; 15(42): 49012-49021, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824473

RESUMO

The nanostructured polymer film introduces a novel mechanism of nonenzymatic cell harvesting by decoupling solid cell-adhesive and soft stimulus-responsive cell-disjoining areas on the surface. The key characteristics of this architecture are the decoupling of adhesion from detachment and the impermeability to the integrin protein complex of the adhesive domains. This surface design eliminates inherent limitations of thermoresponsive coatings, namely, the necessity for the precise thickness of the coating, grafting or cross-linking density, and material of the basal substrate. The concept is demonstrated with nanostructured thermoresponsive films made of cell-adhesive epoxy photoresist domains and cell-disjoining poly(N-isopropylacrylamide) brush domains.


Assuntos
Polímeros Responsivos a Estímulos , Células Cultivadas , Adesão Celular , Resinas Acrílicas/química , Temperatura , Propriedades de Superfície
9.
Adv Funct Mater ; 33(3)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36817407

RESUMO

Two-photon polymerization (TPP) has been widely used to create 3D micro- and nanoscale scaffolds for biological and mechanobiological studies, which often require the mechanical characterization of the TPP fabricated structures. To satisfy physiological requirements, most of the mechanical characterizations need to be conducted in liquid. However, previous characterizations of TPP fabricated structures were all conducted in air due to the limitation of conventional micro- and nanoscale mechanical testing methods. In this study, we report a new experimental method for testing the mechanical properties of TPP-printed microfibers in liquid. The experiments show that the mechanical behaviors of the microfibers tested in liquid are significantly different from those tested in air. By controlling the TPP writing parameters, the mechanical properties of the microfibers can be tailored over a wide range to meet a variety of mechanobiology applications. In addition, it is found that, in water, the plasticly deformed microfibers can return to their pre-deformed shape after tensile strain is released. The shape recovery time is dependent on the size of microfibers. The experimental method represents a significant advancement in mechanical testing of TPP fabricated structures and may help release the full potential of TPP fabricated 3D tissue scaffold for mechanobiological studies.

10.
Biomed Microdevices ; 24(4): 33, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36207557

RESUMO

We previously reported a single-cell adhesion micro tensile tester (SCAµTT) fabricated from IP-S photoresin with two-photon polymerization (TPP) for investigating the mechanics of a single cell-cell junction under defined tensile loading. A major limitation of the platform is the autofluorescence of IP-S, the photoresin for TPP fabrication, which significantly increases background signal and makes fluorescent imaging of stretched cells difficult. In this study, we report the design and fabrication of a new SCAµTT platform that mitigates autofluorescence and demonstrate its capability in imaging a single cell pair as its mutual junction is stretched. By employing a two-material design using IP-S and IP-Visio, a photoresin with reduced autofluorescence, we show a significant reduction in autofluorescence of the platform. Further, by integrating apertures onto the substrate with a gold coating, the influence of autofluorescence on imaging is almost completely mitigated. With this new platform, we demonstrate the ability to image a pair of epithelial cells as they are stretched up to 250% strain, allowing us to observe junction rupture and F-actin retraction while simultaneously recording the accumulation of over 800 kPa of stress in the junction. The platform and methodology presented here can potentially enable detailed investigation of the mechanics of and mechanotransduction in cell-cell junctions and improve the design of other TPP platforms in mechanobiology applications.


Assuntos
Actinas , Mecanotransdução Celular , Actinas/metabolismo , Ouro , Junções Intercelulares/metabolismo , Polimerização
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7578-7581, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892844

RESUMO

This paper presents the experimental findings towards developing carbonized microelectrodes using a Joule heating process within a temperature window that is compatible with CMOS. Bridge-on-pillars polymer structures have been 3D-printed using two-photon polymerization (2PP). They have been annealed in various processing conditions to increase the fraction of carbon in the precursor material and to achieve appreciable electric conductivity so that they can be used to drive current to enable Joule heating. To evaluate the outcome of the processing sequences, Raman spectroscopy has been performed to assess the degree of carbonization. Such CMOS-compatible carbon electrodes are important for monolithic, low-cost biosensor development.Clinical relevance- This establishes the potential of carbonized polymer electrode for low-cost, CMOS-compatible monolithic biosensor platform for implementation in medical diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Polímeros , Condutividade Elétrica , Eletrodos , Calefação
12.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33531347

RESUMO

Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.


Assuntos
Junções Intercelulares/metabolismo , Estresse Mecânico , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Elasticidade , Humanos , Junções Intercelulares/química , Viscosidade
13.
Langmuir ; 37(8): 2667-2676, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591763

RESUMO

The geometric structure of carbon electrodes affects their electrochemical behavior, and large-scale surface roughness leads to thin layer electrochemistry when analyte is trapped in pores. However, the current response is always a mixture of both thin layer and diffusion processes. Here, we systematically explore the effects of thin layer electrochemistry and diffusion at carbon fiber (CF), carbon nanospike (CNS), and carbon nanotube yarn (CNTY) electrodes. The cyclic voltammetry (CV) response to the surface-insensitive redox couple Ru(NH3)63+/2+ is tested, so the geometric structure is the only factor. At CFs, the reaction is diffusion-controlled because the surface is smooth. CNTY electrodes have gaps between nanotubes that are about 10 µm deep, comparable with the diffusion layer thickness. CNTY electrodes show clear thin layer behavior due to trapping effects, with more symmetrical peaks and ΔEp closer to zero. CNS electrodes have submicrometer scale roughness, so their CV shape is mostly due to diffusion, not thin layer effects. However, even the 10% contribution of thin layer behavior reduces the peak separation by 30 mV, indicating ΔEp is influenced not only by electron transfer kinetics but also by surface geometry. A new simulation model is developed to quantitate the thin layer and diffusion contributions that explains the CV shape and peak separation for CNS and CNTY electrodes, providing insight on the impact of scan rate and surface structure size. Thus, this study provides key understanding of thin layer and diffusion processes at different surface structures and will enable rational design of electrodes with thin layer electrochemistry.

14.
Nano Lett ; 20(9): 6831-6836, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32813535

RESUMO

Direct laser writing, a nano 3D-printing approach, has enabled fabrication of customized carbon microelectrode sensors for neurochemical detection. However, to detect neurotransmitters in tiny biological organisms or synapses, submicrometer nanoelectrodes are required. In this work, we used 3D printing to fabricate carbon nanoelectrode sensors. Customized structures were 3D printed and then pyrolyzed, resulting in free-standing carbon electrodes with nanotips. The nanoelectrodes were insulated with atomic layer deposition of Al2O3 and the nanotips were polished by a focused ion beam to form 600 nm disks. Using fast-scan cyclic voltammetry, the electrodes successfully detected stimulated dopamine in the adult fly brain, demonstrating that they are robust and sensitive enough to use in tiny biological systems. This work is the first demonstration of 3D printing to fabricate free-standing carbon nanoelectrode sensors and will enable batch fabrication of customized nanoelectrode sensors with precise control and excellent reproducibility.


Assuntos
Carbono , Neurotransmissores , Microeletrodos , Impressão Tridimensional , Reprodutibilidade dos Testes
15.
ACS Nano ; 13(10): 12109-12119, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31592639

RESUMO

Inspired by recent reports on possible proton conductance through graphene, we have investigated the behavior of pristine graphene and defect engineered graphene membranes for ionic conductance and selectivity with the goal of evaluating a possibility of its application as a proton selective membrane. The averaged conductance for pristine chemical vapor deposited (CVD) graphene at pH1 is ∼4 mS/cm2 but varies strongly due to contributions from the unavoidable defects in our CVD graphene. From the variations in the conductance with electrolyte strength and pH, we can conclude that pristine graphene is fairly selective and the conductance is mainly due to protons. Engineering of the defects with ion beam (He+, Ga+) irradiation and plasma (N2 and H2) treatment showed improved areal conductance with high proton selectivity mostly for He-ion beam and H2 plasma treatments, which agrees with primarily vacancy-free type of defects produced in these cases confirmed by Raman analysis.

16.
Carbon N Y ; 155: 250-257, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31588146

RESUMO

Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.

17.
Appl Spectrosc ; 73(6): 665-677, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30990053

RESUMO

The use of nanomachining methods capable of reproducible construction of nano-arrayed devices have revolutionized the field of plasmonic sensing by the introduction of a diversity of rationally engineered designs. Significant strides have been made to fabricate plasmonic platforms with tailored interparticle gaps to improve their performance for surface-enhanced Raman scattering (SERS) applications. Over time, a dichotomy has emerged in the implementation of SERS for analytical applications, the construction of substrates, optimization of interparticle spacing as a means to optimize electromagnetic field enhancement at the localized surface plasmon level, and the substrate sensitivity over extended areas to achieve quantitative performance. This work assessed the enhancement factor of plasmonic Ag/SiO2/Si disc-on-pillar (DOP) arrays of variable pitch with its analytical performance for quantitative applications. Experimental data were compared with those from finite-difference time-domain (FDTD) simulations used in the optimization of the array dimensions. A self-assembled monolayer (SAM) of benzenethiol rendered highly reproducible signals (RSD ∼4-10%) and SERS substrate enhancement factor (SSEF) values in the orders of 106-108 for all pitches. Spectra corresponding to rhodamine 6G (R6G) and 4-aminobenzoic acid demonstrated the advantages of using the more densely packed DOP arrays with a 160 nm pitch (gap = 40 nm) for quantitation in spite of the strongest SSEF was attained for a pitch of 520 nm corresponding to a 400 nm gap.

18.
Nanoscale Adv ; 1(9): 3392-3399, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133556

RESUMO

Tip-enhanced Raman spectroscopy (TERS) has been established as one the most efficient analytical techniques for probing vibrational states with nanoscale resolution. While TERS may be a source of unique information about chemical structure and interactions, it has a limited use for materials with rough or sticky surfaces. Development of the TERS approach utilizing a non-contact scanning probe microscopy mode can significantly extend the number of applications. Here we demonstrate a proof of the concept and feasibility of a non-contact TERS approach and test it on various materials. Our experiments show that non-contact TERS can provide 10 nm spatial resolution and a Raman signal enhancement factor of 105, making it very promising for chemical imaging of materials with high aspect ratio surface patterns and biomaterials.

19.
Angew Chem Int Ed Engl ; 57(43): 14255-14259, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30207021

RESUMO

Implantable neural microsensors have significantly advanced neuroscience research, but the geometry of most probes is limited by the fabrication methods. Therefore, new methods are needed for batch-manufacturing with high reproducibility. Herein, a novel method is developed using two-photon nanolithography followed by pyrolysis for fabrication of free-standing microelectrodes with a carbon electroactive surface. 3D-printed spherical and conical electrodes were characterized with slow scan cyclic voltammetry (CV). With fast-scan CV, the electrodes showed low dopamine LODs of 11±1 nm (sphere) and 10±2 nm (cone), high sensitivity to multiple neurochemicals, and high reproducibility. Spherical microelectrodes were used to detect dopamine in a brain slice and in vivo, demonstrating they are robust enough for tissue implantation. This work is the first demonstration of 3D-printing of free-standing carbon electrodes; and the method is promising for batch fabrication of customized, implantable neural sensors.


Assuntos
Carbono/química , Microeletrodos , Neurotransmissores/análise , Impressão Tridimensional , Técnicas Eletroquímicas , Microscopia Eletrônica de Varredura , Análise Espectral Raman
20.
ACS Appl Mater Interfaces ; 10(37): 31745-31754, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30111086

RESUMO

Oxygen and water vapor sensing properties are investigated in metal-oxide-hybrid polymer nanocomposite thin films generated by infiltration synthesis, which incorporates molecular ZnO into the matrix of SU-8 polymer, a common negative-tone photoresist. The hybrid thin films display 20-fold higher gravimetric responses to oxygen and water vapor than those of control ZnO thin films in the dark. An additional 50-500% enhanced responses are detected under UV irradiation. The overall enhanced gravimetric response in the hybrid film is attributed to the ZnO molecules distributed in the polymer matrix, whereas the UV enhancement is explained by the light-induced, reversible generation of hydrophilic fluoroantimonic acid from triarylsulfonium hexafluoroantimonate photoacids, which leads to the increased surface potential and adsorption energies for oxygen and water. A gravimetric sensor based on a series of ZnO-infiltrated SU-8 films under UV excitation enables 96% accurate classification of water and oxygen environment with sub 10 mTorr detection limits. The results demonstrate UV-induced fully reversible surface hydrophilicity of ZnO/SU-8 hybrid nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA