Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 50(4): 877-884, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28218831

RESUMO

Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29Si, enrichment of 17O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.

2.
Photochem Photobiol ; 90(2): 439-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24134493

RESUMO

We synthesized two molecular systems, in which an endofullerene C60 , incarcerating one hydrogen molecule (H2 @C60 ) and a nitroxide radical are connected by a folded 310 -helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determined by (1) H NMR spectroscopy. The experimental results were analyzed using DFT-optimized molecular models. The relaxation rates and the conversion rates of the two peptides fall in the expected distance range. One of the two peptides is particularly rigid and thus ideal to keep the H2 @C60 /nitroxide separation, r, as large and controlled as possible, which results in particularly low relaxation and conversion rates. Despite the very similar optimized distance, however, the rates measured with the other peptide are considerably higher and thus are compatible with a shorter effective distance. The results strengthen the outcome of previous investigations that while the para → ortho conversion rates satisfactorily obey the Wigner's theory, the nuclear spin relaxation rates are in excellent agreement with the Solomon-Bloembergen equation predicting a 1/r(6) dependence.


Assuntos
Fulerenos/química , Hidrogênio/química , Óxidos de Nitrogênio/química , Peptídeos/química , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética
3.
Org Lett ; 15(18): 4746-9, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24004381

RESUMO

Relaxation rates of endo-H2O in H2O@Open-C60 in the presence of a nitroxide radical and of their nitroxide derivatives have been measured and are compared with effects for endo-H2 in similar cages. T1 relaxation enhancement of the endo-H2O and H2 induced by either intra- or intermolecular interaction is relatively insensitive to the presence of a cage opening. Enhancement of intermolecular relaxation is observed, however, when the cage opening has an OH group.

4.
Philos Trans A Math Phys Eng Sci ; 371(1998): 20110628, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918710

RESUMO

Spectroscopic studies of recently synthesized endofullerenes, in which H2, H2O and other atoms and small molecules are trapped in cages of carbon atoms, have shown that although the trapped molecules interact relatively weakly with the internal environment they are nevertheless susceptible to appropriately applied external perturbations. These properties have been exploited to isolate and study samples of H2 in C60 and other fullerenes that are highly enriched in the para spin isomer. Several strategies for spin-isomer enrichment, potential extensions to other endofullerenes and possible applications of these materials are discussed.

5.
Philos Trans A Math Phys Eng Sci ; 371(1998): 20110634, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918714

RESUMO

We have investigated the structure and nuclear magnetic resonance (NMR) spectroscopic properties of some dihydrogen endofullerene nitroxides by means of density-functional theory (DFT) calculations. Quantum versus classical roto-translational dynamics of H2 have been characterized and compared. Geometrical parameters and hyperfine couplings calculated by DFT have been input to the Solomon-Bloembergen equations to predict the enhancement of the NMR longitudinal relaxation of H2 due to coupling with the unpaired electron. Estimating the rotational correlation time via computed molecular volumes leads to a fair agreement with experiment for the simplest derivative; the estimate is considerably improved by recourse to the calculation of the diffusion tensor. For the other more flexible congeners, the agreement is less good, which may be due to an insufficient sampling of the conformational space. In all cases, relaxation by Fermi contact and Curie mechanisms is predicted to be negligible.

6.
J Am Chem Soc ; 134(31): 12881-4, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22812931

RESUMO

An endofulleropyrrolidine, with H2 as a guest, has been reduced to a paramagnetic endofulleride radical anion. The magnetic interaction between the electron delocalized on the fullerene cage and the guest H2 has been probed by pulsed ENDOR. The experimental hyperfine couplings between the electron and the H2 guest were measured, and their values agree very well with DFT calculations. This agreement provides clear evidence of magnetic communication between the electron density of the fullerene host cage and H2 guest. The ortho-H2/para-H2 interconversion is revealed by temperature-dependent ENDOR measurements at low temperature. The conversion of the paramagnetic ortho-H2 to the diamagnetic para-H2 causes the ENDOR signal to decrease as the temperature is lowered due to the spin catalysis by the paramagnetic fullerene cage of the radical anion fulleride.

7.
Org Lett ; 14(15): 3822-5, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22804493

RESUMO

H(2)O@C(60) derivatives covalently linked to a nitroxide radical were synthesized. The (1)H NMR of the guest H(2)O revealed the formation of many isomers with broad signals. Reduction to the diamagnetic hydroxylamines sharpened the (1)H NMR signals considerably and allowed for an "isomer count" based on the number of observed distinct signals. For H(2)O@K-8, 17 positional isomeric nitroxides are predicted, not including additional numbers of regioisomers; indeed, 17 signals are observed in the (1)H NMR spectrum.

8.
J Phys Chem Lett ; 3(9): 1165-8, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-26288052

RESUMO

The successful synthesis of H2O@C60 makes possible the study of magnetic interactions of an isolated water molecule in a geometrically well-defined hydrophobic environment. Comparisons are made between the T1 values of H2O@C60 and the previously studied H2@C60 and their nitroxide derivatives. The value of T1 is approximately six times longer for H2O@C60 than for H2@C60 at room temperature, is independent of solvent viscosity or polarity, and increases monotonically with decreasing temperature, implying that T1 is dominated by the spin-rotation interaction. Paramagnetic nitroxides, either attached covalently to the C60 cage or added to the medium, produce strikingly similar T1 enhancements for H2O@C60 and H2@C60 that are consistent with through-space interaction between the internal nuclear spins and the external electron spin. This indicates that it should be possible to apply to the endo-H2O molecule the same methodologies for manipulating the ortho and para spin isomers that have proven successful for H2@C60.

9.
Chem Commun (Camb) ; 47(46): 12527-9, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22027815

RESUMO

(1)H NMR of two H(2)@C(60) nitroxide derivatives has been characterized indirectly by reducing to their corresponding hydroxylamines. Nuclear spin relaxation of the endohedral H(2) and external protons of the H(2)@C(60) nitroxide and its corresponding hydroxylamine were measured and analyzed. The observed spectra are consistent with negligible scalar coupling between the unpaired electron and the endo-H(2). An unexpectedly large bimolecular relaxivity induced in the hydroxylamine by the corresponding nitroxide can be explained by rapid hydrogen atom transfer between the two species.


Assuntos
Fulerenos/química , Óxidos de Nitrogênio/química , Hidroxilamina/química , Espectroscopia de Ressonância Magnética , Oxirredução
10.
J Am Chem Soc ; 133(36): 14232-5, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21842909

RESUMO

The photochemical interconversion of the two allotropes of the hydrogen molecule [para-H(2) (pH(2)) and ortho-H(2) (oH(2))] incarcerated inside the fullerene C(70) (pH(2)@C(70) and oH(2)@C(70), respectively) is reported. Photoexcitation of H(2)@C(70) generates a fullerene triplet state that serves as a spin catalyst for pH(2)/oH(2) conversion. This method provides a means of changing the pH(2)/oH(2) ratio inside C(70) by simply irradiating H(2)@C(70) at different temperatures, since the equilibrium ratio is temperature-dependent and the electronic triplet state of the fullerene produced by absorption of the photon serves as an "on-off" spin catalyst. However, under comparable conditions, no photolytic pH(2)/oH(2) interconversion was observed for H(2)@C(60), which was rationalized by the significantly shorter triplet lifetime of H(2)@C(60) relative to H(2)@C(70).

11.
J Phys Chem A ; 115(5): 735-40, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21214281

RESUMO

Kinetic and thermodynamic properties of water encapsulation from organic solution by an open-cage [60]fullerene derivative have been investigated. 2D exchange NMR spectroscopy (EXSY) measurements were employed to determine the association and dissociation constants at 300-330 K (k(a) = 4.3 M(-1) × s(-1) and k(d) = 0.42 s(-1) at 300 K) in 1,1,2,2-tetrachloroethane-d(2) as well as the activation energies (E(a,ass) = 27 kJ mol(-1), E(a,diss) = 50 kJ mol(-1)). The equilibrium constants and thermodynamic parameters in various solvents (benzene-d(6), 1,2-dichlorobenzene-d(4), and dimethylsulfoxide-d(6)) were estimated using 1D-(1)H NMR spectroscopy. The parameters were dependent on the polarity of the solvent; ΔH depended linearly on the solvent polarity, becoming increasingly unfavorable as polarity increased. Mixtures of polar dimethylsulfoxide-d(6) in less polar 1,1,2,2-tetrachloroethane-d(2) showed a similar trend.

12.
Chem Commun (Camb) ; 47(8): 2282-4, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21173964

RESUMO

Bisadduct isomers of a H(2)@C(60) derivative with nitroxide addends have been synthesized, isolated and characterized. The (1)H NMRs of endohedral H(2) of the major isomers show well-separated chemical shifts, which could be useful for structural assignment and identification of the purity of the C(60) bisadduct isomers.

13.
J Phys Chem B ; 114(45): 14689-95, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20572637

RESUMO

Spin-lattice relaxation times, T(1), have been measured from 200-340 K for the protons in H(2) and HD molecules dissolved in toluene-d(8) and incarcerated in C(60). It is found that HD relaxes more slowly than H(2) in both environments and at all temperatures, as expected from the smaller values of the spin-rotation and dipole-dipole coupling in HD compared to H(2). More detailed analysis using models developed to describe relaxation in both condensed media and the gas phase indicates that transitions among the rotational states of H(2) occur at a rate similar to those of HD in both toluene-d(8) solution and in C(60), in contrast to the situation in gas phase collisions between hydrogen and He or Ar, where the lifetimes of rotational states of HD are markedly shorter than those for H(2). Measurements of the relative (1)H chemical shifts of H(2) and HD, the coupling constant J(HD), and the widths of the HD peaks at various temperatures revealed only small effects with insufficient accuracy to warrant more detailed interpretation.

14.
J Am Chem Soc ; 132(12): 4042-3, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20175520

RESUMO

The interconversion of ortho-hydrogen (oH(2)) and para-hydrogen (pH(2)), the two nuclear spin isomers of dihydrogen, requires a paramagnetic spin catalyst such as a nitroxide. We report the design and demonstration of spin catalysis of the interconversion of oH(2) and pH(2) incarcerated in an endofullerene based on a reversible nitroxide/hydroxylamine system. The system is an example of a reversible magnetic spin catalysis switch that can increase the rate of interconversion of the nuclear spin isomers of H(2) by a factor of approximately 10(4).

15.
J Am Chem Soc ; 130(38): 12752-6, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18712869

RESUMO

The kinetics of para-ortho conversion and nuclear spin relaxation of H 2 in chloroform- d 1 were investigated in the presence of nitroxides as paramagnetic catalysts. The back conversion from para-hydrogen ( p-H 2) to ortho-hydrogen ( o-H 2) was followed by NMR by recording the increase in the intensity of the signal of o-H 2 at regular intervals of time. The nitroxides proved to be hundreds of times more effective at inducing relaxation among the spin levels of o-H 2 than they are in bringing about transitions between p-H 2 and the levels of o-H 2. The value of the encounter distance d between H 2 and the paramagnetic molecule, calculated from the experimental bimolecular conversion rate constant k 0, using the Wigner theory of para-ortho conversion, agrees perfectly with that calculated from the experimental relaxivity R 1 using the force free diffusion theory of spin-lattice relaxation.

16.
J Am Chem Soc ; 130(32): 10506-7, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18642816

RESUMO

The interconversion of the two allotropes of the hydrogen molecule (para-H2 and ortho-H2) incarcerated inside the fullerene C60 is reported (oH2@C60 and pH2@C60, respectively). For conversion, oH2@C60 was adsorbed at the external surface of the zeolite NaY and immersed into liquid oxygen at 77 K. Equilibrium was reached in less than 0.5 h. Rapid removal of oxygen provides a sample of enriched pH2@C60 that is stable for many days in the absence of paramagnetic catalysts (half-life approximately 15 days). Enriched pH2@C60 is nonvolatile and soluble in organic solvents. At room temperature in the presence of a paramagnetic catalyst (dissolved O2 or the nitroxide Tempo) a slow back conversion into oH2@C60 was observed by 1H NMR. A bimolecular rate constant for conversion of pH2@C60 to oH2@C60 using Tempo of kTempo approximately 4 x 10-5 M-1 s-1 was observed, which is approximately 3 orders of magnitudes slower than that for dissolved pH2 in organic solvents which is not protected by the C60 shell.

17.
J Am Chem Soc ; 130(7): 2221-5, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18217754

RESUMO

We have measured the bimolecular contribution (relaxivity) R1 (M(-1) s(-1)) to the spin-lattice relaxation rate for the protons of H2 and H2@C60 dissolved in organic solvents in the presence of paramagnet nitroxide radicals. It is found that the relaxation effect of the paramagnets is enhanced 5-fold in H2@C60 compared to H2 under the same conditions. 13C relaxivity in C60 induced by nitroxide has also been measured. The resulting value of R1 for 13C is substantially smaller relative to the 1H relaxation in H2@C60 than expected solely on the basis of the smaller magnetic moment of 13C. The observed values of R1 have been analyzed quantitatively using an outer-sphere model for bimolecular spin relaxation to extract an encounter distance, d, as the dependent variable. The resulting values of d for H2 and (13)C60 are similar to the sum of the van der Waals radii for the radical and the corresponding molecule. The value of d for (1)H2@C60 is substantially smaller than the corresponding van der Waals estimates, corresponding to larger than expected values of R1. A possible explanation for the enhanced relaxivity is a contribution from hyperfine coupling. Based on the results reported here, it seems that not only is the hydrogen molecule in H2@C60 not insulated from magnetic contact with the outside world but also the interaction with paramagnets is even stronger than expected based on distance alone.

18.
J Am Chem Soc ; 128(46): 14752-3, 2006 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17105254

RESUMO

The 1H nuclear spin-lattice relaxation time (T1) of H2 and H2@C60 in organic solvents varies with solvent, and it varies proportionally for H2 and for H2@C60. Since intermolecular magnetic interactions are ruled out, the solvent must influence the modulating processes of the relaxation mechanisms of H2 both in the solvent cage and inside C60. The temperature dependence of T1 also is very similar for H2 and H2@C60, T1 going through a maximum by varying the temperature in solvents which allow a wide range of temperatures to be explored. This behavior is attributed to the presence of dipolar and spin-rotation mechanisms which have an opposite dependence on temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...