Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASAIO J ; 69(12): 1090-1098, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774695

RESUMO

To address the unmet clinical need for pediatric circulatory support, we are developing an operationally versatile, hybrid, continuous-flow, total artificial heart ("Dragon Heart"). This device integrates a magnetically levitated axial and centrifugal blood pump. Here, we utilized a validated axial flow pump, and we focused on the development of the centrifugal pump. A motor was integrated to drive the centrifugal pump, achieving 50% size reduction. The motor design was simulated by finite element analysis, and pump design improvement was attained by computational fluid dynamics. A prototype centrifugal pump was constructed from biocompatible 3D printed parts for the housing and machined metal parts for the drive system. Centrifugal prototype testing was conducted using water and then bovine blood. The fully combined device ( i.e. , axial pump nested inside of the centrifugal pump) was tested to ensure proper operation. We demonstrated the hydraulic performance of the two pumps operating in tandem, and we found that the centrifugal blood pump performance was not adversely impacted by the simultaneous operation of the axial blood pump. The current iteration of this design achieved a range of operation overlapping our target range. Future design iterations will further reduce size and incorporate complete and active magnetic levitation.


Assuntos
Insuficiência Cardíaca , Coração Artificial , Coração Auxiliar , Humanos , Criança , Animais , Bovinos , Desenho de Prótese , Hidrodinâmica , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...