Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 122(1): 59-67, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29668853

RESUMO

Background and Aims: The structural properties of leaf venation and xylem anatomy strongly influence leaf hydraulics, including the ability of leaves to maintain hydraulic function during drought. Here we examined the strength of the links between different leaf venation traits and leaf hydraulic vulnerability to drought (expressed as P50leaf by rehydration kinetics) in a diverse group of 26 woody angiosperm species, representing a wide range of leaf vulnerabilities, from four low-nutrient sites with contrasting rainfall across eastern Australia. Methods: For each species we measured key aspects of leaf venation design, xylem anatomy and leaf morphology. We also assessed for the first time the scaling relationships between hydraulically weighted vessel wall thickness (th) and lumen breadth (bh) across vein orders and habitats. Key Results: Across species, variation in P50leaf was strongly correlated with the ratio of vessel wall thickness (th) to lumen breadth (bh) [(t/b)h; an index of conduit reinforcement] at each leaf vein order. Concomitantly, the scaling relationship between th and bh was similar across vein orders, with a log-log slope less than 1 indicating greater xylem reinforcement in smaller vessels. In contrast, P50leaf was not related to th and bh individually, to major vein density (Dvmajor) or to leaf size. Principal components analysis revealed two largely orthogonal trait groupings linked to variation in leaf size and drought tolerance. Conclusions: Our results indicate that xylem conduit reinforcement occurs throughout leaf venation, and remains closely linked to leaf drought tolerance irrespective of leaf size.


Assuntos
Magnoliopsida/anatomia & histologia , Xilema/anatomia & histologia , Austrália , Clima , Secas , Meio Ambiente , Magnoliopsida/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Madeira , Xilema/fisiologia
2.
Ecol Evol ; 6(1): 267-78, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811791

RESUMO

Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas-exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf-specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO 2 assimilation rate were also measured for most species (n = 19-35). Vein density was not correlated with leaf-specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO 2 assimilation, with r (2) values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf-specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r (2) = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf-specific conductance was weakly correlated with net maximal CO 2 assimilation (r (2) = 0.21; P = 0.005; n = 35). Calculated leaf-specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms.

3.
Oecologia ; 178(4): 1033-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25842297

RESUMO

Although produced by meristems that are continuous along the stem length, marked differences in bark morphology and in microenvironment would suggest that main stem and twig bark might differ ecologically. Here, we examined: (1) how closely associated main stem and twig bark traits were, (2) how these associations varied across sites, and (3) used these associations to infer functional and ecological differences between twig and main stem bark. We measured density, water content, photosynthesis presence/absence, total, outer, inner, and relative thicknesses of main stem and twig bark from 85 species of angiosperms from six sites of contrasting precipitation, temperature, and fire regimes. Density and water content did not differ between main stems and twigs across species and sites. Species with thicker twig bark had disproportionately thicker main stem bark in most sites, but the slope and degree of association varied. Disproportionately thicker main stem bark for a given twig bark thickness in most fire-prone sites suggested stem protection near the ground. The savanna had the opposite trend, suggesting that selection also favors twig protection in these fire-prone habitats. A weak main stem-twig bark thickness association was observed in non fire-prone sites. The near-ubiquity of photosynthesis in twigs highlighted its likely ecological importance; variation in this activity was predicted by outer bark thickness in main stems. It seems that the ecology of twig bark can be generalized to main stem bark, but not for functions depending on the amount of bark, such as protection, storage, or photosynthesis.


Assuntos
Ecologia , Magnoliopsida/fisiologia , Casca de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Árvores/fisiologia , Ecossistema , Incêndios , Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento , Fotossíntese , Casca de Planta/anatomia & histologia , Casca de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Água/metabolismo
4.
Tree Physiol ; 34(3): 275-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550089

RESUMO

Low water potentials in xylem can result in damaging levels of cavitation, yet little is understood about which hydraulic traits have most influence in delaying the onset of hydraulic dysfunction during periods of drought. We examined three traits contributing to longer desiccation times in excised shoots of 11 species from two sites of contrasting aridity: (i) the amount of water released from plant tissues per decrease in xylem water potential (WΨ); (ii) the minimum xylem water potential preceding acute water stress (defined as P50L; water potential at 50% loss of leaf conductance); and (iii) the integrated transpiration rate between the points of full hydration and P50L (Wtime). The time required for species to reach P50L varied markedly, ranging from 1.3 h to nearly 3 days. WΨ, P50L and Wtime all contributed significantly to longer desiccation times, explaining 28, 22 and 50% of the variance in the time required to reach P50L. Interestingly, these three traits were nearly orthogonal to one another, suggesting that they do not represent alternative hydraulic strategies, but likely trade off with other ecological strategies not evaluated in this study. The majority of water lost during desiccation (60-91%) originated from leaves, suggesting an important role for leaf capacitance in small plants when xylem water potentials decrease below -2 MPa.


Assuntos
Dessecação , Ecossistema , Umidade , Magnoliopsida/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Madeira/fisiologia , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Característica Quantitativa Herdável , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...