Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102202, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35768046

RESUMO

The ring-forming AAA+ hexamer ClpC1 associates with the peptidase ClpP1P2 to form a central ATP-driven protease in Mycobacterium tuberculosis (Mtb). ClpC1 is essential for Mtb viability and has been identified as the target of antibacterial peptides like CyclomarinA (CymA) that exhibit strong toxicity toward Mtb. The mechanistic actions of these drugs are poorly understood. Here, we dissected how ClpC1 activity is controlled and how this control is deregulated by CymA. We show that ClpC1 exists in diverse activity states correlating with its assembly. The basal activity of ClpC1 is low, as it predominantly exists in an inactive nonhexameric resting state. We show that CymA stimulates ClpC1 activity by promoting formation of supercomplexes composed of multiple ClpC1 hexameric rings, enhancing ClpC1-ClpP1P2 degradation activity toward various substrates. Both the ClpC1 resting state and the CymA-induced alternative assembly state rely on interactions between the ClpC1 coiled-coil middle domains (MDs). Accordingly, we found that mutation of the conserved aromatic F444 residue located at the MD tip blocks MD interactions and prevents assembly into higher order complexes, thereby leading to constitutive ClpC1 hexamer formation. We demonstrate that this assembly state exhibits the highest ATPase and proteolytic activities, yet its heterologous expression in Escherichia coli is toxic, indicating that the formation of such a state must be tightly controlled. Taken together, these findings define the basis of control of ClpC1 activity and show how ClpC1 overactivation by an antibacterial drug generates toxicity.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis , Oligopeptídeos/farmacologia , Proteínas de Bactérias/química , Endopeptidase Clp/química , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo
2.
Commun Biol ; 4(1): 2, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398031

RESUMO

N-terminal acetylation is one of the most common protein modifications in eukaryotes and is carried out by N-terminal acetyltransferases (NATs). It plays important roles in protein homeostasis, localization, and interactions and is linked to various human diseases. NatB, one of the major co-translationally active NATs, is composed of the catalytic subunit Naa20 and the auxiliary subunit Naa25, and acetylates about 20% of the proteome. Here we show that NatB substrate specificity and catalytic mechanism are conserved among eukaryotes, and that Naa20 alone is able to acetylate NatB substrates in vitro. We show that Naa25 increases the Naa20 substrate affinity, and identify residues important for peptide binding and acetylation activity. We present the first Naa20 crystal structure in complex with the competitive inhibitor CoA-Ac-MDEL. Our findings demonstrate how Naa20 binds its substrates in the absence of Naa25 and support prospective endeavors to derive specific NAT inhibitors for drug development.


Assuntos
Chaetomium/enzimologia , Acetiltransferase N-Terminal B/metabolismo , Chaetomium/genética , Proteínas Fúngicas/metabolismo , Estrutura Molecular , Acetiltransferase N-Terminal B/genética , Especificidade por Substrato
3.
New Phytol ; 228(2): 554-569, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548857

RESUMO

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.


Assuntos
Arabidopsis , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Estresse Salino
4.
Plant Physiol ; 182(2): 792-806, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744933

RESUMO

N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Acetiltransferase N-Terminal B/metabolismo , Plântula/metabolismo , Estresse Fisiológico/genética , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Técnicas In Vitro , Mutagênese Insercional , Acetiltransferase N-Terminal B/genética , Pressão Osmótica , Proteoma/genética , Proteoma/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...